Department of Biological Sciences, University of Illinois at Chicago Chicago, IL, USA.
Front Cell Neurosci. 2014 Sep 18;8:290. doi: 10.3389/fncel.2014.00290. eCollection 2014.
Within neural networks, synchronization of activity is dependent upon the synaptic connectivity of embedded microcircuits and the intrinsic membrane properties of their constituent neurons. Synaptic integration, dendritic Ca(2+) signaling, and non-linear interactions are crucial cellular attributes that dictate single neuron computation, but their roles promoting synchrony and the generation of network oscillations are not well understood, especially within the context of a defined behavior. In this regard, the lamprey spinal central pattern generator (CPG) stands out as a well-characterized, conserved vertebrate model of a neural network (Smith et al., 2013a), which produces synchronized oscillations in which neural elements from the systems to cellular level that control rhythmic locomotion have been determined. We review the current evidence for the synaptic basis of oscillation generation with a particular emphasis on the linkage between synaptic communication and its cellular coupling to membrane processes that control oscillatory behavior of neurons within the locomotor network. We seek to relate dendritic function found in many vertebrate systems to the accessible lamprey central nervous system in which the relationship between neural network activity and behavior is well understood. This enables us to address how Ca(2+) signaling in spinal neuron dendrites orchestrate oscillations that drive network behavior.
在神经网络中,活动的同步取决于嵌入微电路的突触连接和其组成神经元的固有膜特性。突触整合、树突 Ca(2+)信号和非线性相互作用是决定单个神经元计算的关键细胞属性,但它们在促进同步和产生网络振荡方面的作用尚不清楚,特别是在特定行为的背景下。在这方面,七鳃鳗脊髓中枢模式发生器 (CPG) 作为一个经过充分研究的、保守的神经网络的脊椎动物模型脱颖而出 (Smith 等人,2013a),它产生同步振荡,其中控制节律性运动的系统到细胞水平的神经元件已经确定。我们回顾了目前关于振荡产生的突触基础的证据,特别强调了突触通讯与其对控制运动网络中神经元振荡行为的膜过程的细胞偶联之间的联系。我们试图将在许多脊椎动物系统中发现的树突功能与可及的七鳃鳗中枢神经系统联系起来,在该系统中,神经网络活动和行为之间的关系是众所周知的。这使我们能够解决脊髓神经元树突中的 Ca(2+)信号如何协调驱动网络行为的振荡。