Gromov Nikolay, Sizov Grigory
Mathematics Department, King's College London, The Strand, London WC2R 2LS, United Kingdom and St. Petersburg INP, Gatchina, 188300 St. Petersburg, Russia.
Mathematics Department, King's College London, The Strand, London WC2R 2LS, United Kingdom.
Phys Rev Lett. 2014 Sep 19;113(12):121601. doi: 10.1103/PhysRevLett.113.121601. Epub 2014 Sep 16.
Using the quantum spectral curve approach we compute, exactly, an observable (called slope function) in the planar Aharony-Bergman-Jafferis-Maldacena theory in terms of an unknown interpolating function h(λ) which plays the role of the coupling in any integrability based calculation in this theory. We verified our results with known weak coupling expansion in the gauge theory and with the results of semiclassical string calculations. Quite surprisingly at strong coupling the result is given by an explicit rational function of h(λ) to all orders. By comparing the structure of our result with that of an exact localization based calculation for a similar observable in Marino and Putrov [J. High Energy Phys. 06 (2010) 011], we conjecture an exact expression for h(λ).
利用量子谱曲线方法,我们精确计算了平面阿哈罗尼 - 伯格曼 - 贾费里斯 - 马尔达塞纳理论中的一个可观测量(称为斜率函数),该计算基于一个未知的插值函数(h(λ)),在该理论中基于可积性的任何计算里,此函数扮演耦合的角色。我们通过规范理论中已知的弱耦合展开以及半经典弦计算结果验证了我们的结果。非常令人惊讶的是,在强耦合下,结果由(h(λ))的显式有理函数给出,且到所有阶数都是如此。通过将我们结果的结构与马里诺和普特罗夫[《高能物理杂志》06 (2010) 011]中对类似可观测量基于精确局域化的计算结果进行比较,我们推测出了(h(λ))的精确表达式。