Suppr超能文献

齐雷尔森界与超对称纠缠态

Tsirelson's bound and supersymmetric entangled states.

作者信息

Borsten L, Brádler K, Duff M J

机构信息

Department of Theoretical Physics , Blackett Laboratory, Imperial College London , London SW7 2AZ, UK.

School of Computer Science , McGill University , Montreal, Quebec, Canada H3A 2A7.

出版信息

Proc Math Phys Eng Sci. 2014 Oct 8;470(2170):20140253. doi: 10.1098/rspa.2014.0253.

Abstract

A superqubit, belonging to a (2|1)-dimensional super-Hilbert space, constitutes the minimal supersymmetric extension of the conventional qubit. In order to see whether superqubits are more non-local than ordinary qubits, we construct a class of two-superqubit entangled states as a non-local resource in the CHSH game. Since super Hilbert space amplitudes are Grassmann numbers, the result depends on how we extract real probabilities and we examine three choices of map: (1) DeWitt (2) Trigonometric and (3) Modified Rogers. In cases (1) and (2), the winning probability reaches the Tsirelson bound [Formula: see text] of standard quantum mechanics. Case (3) crosses Tsirelson's bound with ≃0.9265. Although all states used in the game involve probabilities lying between 0 and 1, case (3) permits other changes of basis inducing negative transition probabilities.

摘要

一个属于(2|1)维超希尔伯特空间的超量子比特构成了传统量子比特的最小超对称扩展。为了探究超量子比特是否比普通量子比特更具非局域性,我们构造了一类双超量子比特纠缠态,作为CHSH游戏中的一种非局域资源。由于超希尔伯特空间振幅是格拉斯曼数,结果取决于我们如何提取实际概率,我们研究了三种映射选择:(1) 德维特 (2) 三角函数 (3) 修正罗杰斯。在情况(1)和(2)中,获胜概率达到标准量子力学的Tsirelson界[公式:见正文]。情况(3)以约0.9265超过了Tsirelson界。尽管游戏中使用的所有态的概率都在0到1之间,但情况(3)允许其他基的变化诱导出负跃迁概率。

相似文献

1
Tsirelson's bound and supersymmetric entangled states.
Proc Math Phys Eng Sci. 2014 Oct 8;470(2170):20140253. doi: 10.1098/rspa.2014.0253.
2
Experimental violation of Bell's inequality beyond Tsirelson's bound.
Phys Rev Lett. 2006 Oct 27;97(17):170408. doi: 10.1103/PhysRevLett.97.170408.
3
Approaching Tsirelson's Bound in a Photon Pair Experiment.
Phys Rev Lett. 2015 Oct 30;115(18):180408. doi: 10.1103/PhysRevLett.115.180408.
4
Maximally nonlocal Clauser-Horne-Shimony-Holt scenarios.
Sci Rep. 2018 May 8;8(1):7128. doi: 10.1038/s41598-018-24970-3.
5
Secrecy in Prepare-and-Measure Clauser-Horne-Shimony-Holt Tests with a Qubit Bound.
Phys Rev Lett. 2015 Oct 9;115(15):150501. doi: 10.1103/PhysRevLett.115.150501. Epub 2015 Oct 6.
6
Experimental evidence for bounds on quantum correlations.
Phys Rev Lett. 2004 Feb 13;92(6):060404. doi: 10.1103/PhysRevLett.92.060404. Epub 2004 Feb 12.
7
Proposed experiment to test the bounds of quantum correlations.
Phys Rev Lett. 2004 Feb 13;92(6):060403. doi: 10.1103/PhysRevLett.92.060403. Epub 2004 Feb 12.
8
Why the Tsirelson Bound? Bub's Question and Fuchs' Desideratum.
Entropy (Basel). 2019 Jul 15;21(7):692. doi: 10.3390/e21070692.
9
Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces.
Opt Express. 2009 May 11;17(10):8287-93. doi: 10.1364/oe.17.008287.
10
Ubiquitous Nonlocal Entanglement with Majorana Zero Modes.
Phys Rev Lett. 2017 Oct 13;119(15):157702. doi: 10.1103/PhysRevLett.119.157702.

引用本文的文献

1
Indistinguishability as nonlocality constraint.
Sci Rep. 2018 Apr 17;8(1):6091. doi: 10.1038/s41598-018-24489-7.

本文引用的文献

1
Information causality as a physical principle.
Nature. 2009 Oct 22;461(7267):1101-4. doi: 10.1038/nature08400.
2
Generalized no-broadcasting theorem.
Phys Rev Lett. 2007 Dec 14;99(24):240501. doi: 10.1103/PhysRevLett.99.240501. Epub 2007 Dec 13.
3
Limit on nonlocality in any world in which communication complexity is not trivial.
Phys Rev Lett. 2006 Jun 30;96(25):250401. doi: 10.1103/PhysRevLett.96.250401. Epub 2006 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验