Borsten L, Brádler K, Duff M J
Department of Theoretical Physics , Blackett Laboratory, Imperial College London , London SW7 2AZ, UK.
School of Computer Science , McGill University , Montreal, Quebec, Canada H3A 2A7.
Proc Math Phys Eng Sci. 2014 Oct 8;470(2170):20140253. doi: 10.1098/rspa.2014.0253.
A superqubit, belonging to a (2|1)-dimensional super-Hilbert space, constitutes the minimal supersymmetric extension of the conventional qubit. In order to see whether superqubits are more non-local than ordinary qubits, we construct a class of two-superqubit entangled states as a non-local resource in the CHSH game. Since super Hilbert space amplitudes are Grassmann numbers, the result depends on how we extract real probabilities and we examine three choices of map: (1) DeWitt (2) Trigonometric and (3) Modified Rogers. In cases (1) and (2), the winning probability reaches the Tsirelson bound [Formula: see text] of standard quantum mechanics. Case (3) crosses Tsirelson's bound with ≃0.9265. Although all states used in the game involve probabilities lying between 0 and 1, case (3) permits other changes of basis inducing negative transition probabilities.
一个属于(2|1)维超希尔伯特空间的超量子比特构成了传统量子比特的最小超对称扩展。为了探究超量子比特是否比普通量子比特更具非局域性,我们构造了一类双超量子比特纠缠态,作为CHSH游戏中的一种非局域资源。由于超希尔伯特空间振幅是格拉斯曼数,结果取决于我们如何提取实际概率,我们研究了三种映射选择:(1) 德维特 (2) 三角函数 (3) 修正罗杰斯。在情况(1)和(2)中,获胜概率达到标准量子力学的Tsirelson界[公式:见正文]。情况(3)以约0.9265超过了Tsirelson界。尽管游戏中使用的所有态的概率都在0到1之间,但情况(3)允许其他基的变化诱导出负跃迁概率。