Suppr超能文献

心脏瓣膜细胞及其微环境——来自体外研究的见解

Cardiac valve cells and their microenvironment--insights from in vitro studies.

作者信息

Wang Huan, Leinwand Leslie A, Anseth Kristi S

机构信息

Department of Chemical and Biological Engineering, 3415 Colorado Avenue, JSC Biotechnology Centre, 596 UCB, University of Colorado, Boulder, CO 80303, USA.

Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO 80309, USA.

出版信息

Nat Rev Cardiol. 2014 Dec;11(12):715-27. doi: 10.1038/nrcardio.2014.162. Epub 2014 Oct 14.

Abstract

During every heartbeat, cardiac valves open and close coordinately to control the unidirectional flow of blood. In this dynamically challenging environment, resident valve cells actively maintain homeostasis, but the signalling between cells and their microenvironment is complex. When homeostasis is disrupted and the valve opening obstructed, haemodynamic profiles can be altered and lead to impaired cardiac function. Currently, late stages of cardiac valve diseases are treated surgically, because no drug therapies exist to reverse or halt disease progression. Consequently, investigators have sought to understand the molecular and cellular mechanisms of valvular diseases using in vitro cell culture systems and biomaterial scaffolds that can mimic the extracellular microenvironment. In this Review, we describe how signals in the extracellular matrix regulate valve cell function. We propose that the cellular context is a critical factor when studying the molecular basis of valvular diseases in vitro, and one should consider how the surrounding matrix might influence cell signalling and functional outcomes in the valve. Investigators need to build a systems-level understanding of the complex signalling network involved in valve regulation, to facilitate drug target identification and promote in situ or ex vivo heart valve regeneration.

摘要

在每次心跳过程中,心脏瓣膜协同打开和关闭,以控制血液的单向流动。在这种动态变化的挑战性环境中,瓣膜驻留细胞积极维持内环境稳态,但其细胞与其微环境之间的信号传导很复杂。当内环境稳态被破坏且瓣膜开口受阻时,血流动力学特征可能会改变并导致心脏功能受损。目前,心脏瓣膜疾病的晚期通过手术治疗,因为不存在能够逆转或阻止疾病进展的药物疗法。因此,研究人员试图利用能够模拟细胞外微环境的体外细胞培养系统和生物材料支架来了解瓣膜疾病的分子和细胞机制。在本综述中,我们描述了细胞外基质中的信号如何调节瓣膜细胞功能。我们提出,在体外研究瓣膜疾病的分子基础时,细胞环境是一个关键因素,人们应该考虑周围基质如何影响瓣膜中的细胞信号传导和功能结果。研究人员需要从系统层面理解参与瓣膜调节的复杂信号网络,以促进药物靶点的识别并推动原位或离体心脏瓣膜再生。

相似文献

1
Cardiac valve cells and their microenvironment--insights from in vitro studies.
Nat Rev Cardiol. 2014 Dec;11(12):715-27. doi: 10.1038/nrcardio.2014.162. Epub 2014 Oct 14.
2
Valvular Endothelial Cell Response to the Mechanical Environment-A Review.
Cell Biochem Biophys. 2021 Dec;79(4):695-709. doi: 10.1007/s12013-021-01039-z. Epub 2021 Oct 18.
4
Hypoxia promotes primitive glycosaminoglycan-rich extracellular matrix composition in developing heart valves.
Am J Physiol Heart Circ Physiol. 2017 Dec 1;313(6):H1143-H1154. doi: 10.1152/ajpheart.00209.2017. Epub 2017 Aug 25.
5
Role of angiogenetic factors in cardiac valve homeostasis and disease.
J Cardiovasc Transl Res. 2011 Dec;4(6):727-40. doi: 10.1007/s12265-011-9317-8. Epub 2011 Aug 25.
6
Heart valve development: regulatory networks in development and disease.
Circ Res. 2009 Aug 28;105(5):408-21. doi: 10.1161/CIRCRESAHA.109.201566.
7
Molecular and functional characteristics of heart-valve interstitial cells.
Philos Trans R Soc Lond B Biol Sci. 2007 Aug 29;362(1484):1437-43. doi: 10.1098/rstb.2007.2126.
8
The role of cell biology and leaflet remodeling in the progression of heart valve disease.
Methodist Debakey Cardiovasc J. 2010 Jan-Mar;6(1):2-7. doi: 10.14797/mdcj-6-1-2.
9
Scleraxis is required for cell lineage differentiation and extracellular matrix remodeling during murine heart valve formation in vivo.
Circ Res. 2008 Oct 24;103(9):948-56. doi: 10.1161/CIRCRESAHA.108.177238. Epub 2008 Sep 18.
10
Mechanisms of heart valve development and disease.
Development. 2020 Jul 3;147(13):dev183020. doi: 10.1242/dev.183020.

引用本文的文献

2
PTEN Regulates Myofibroblast Activation in Valvular Interstitial Cells Based on Subcellular Localization.
Adv Biol (Weinh). 2025 Jul;9(7):e2400540. doi: 10.1002/adbi.202400540. Epub 2025 Apr 14.
5
Histological Analysis of a Decellularized Pulmonary Homograft Explanted From a Pediatric Patient.
JACC Case Rep. 2025 Jan 15;30(2):102806. doi: 10.1016/j.jaccas.2024.102806.
6
Murine neonatal cardiac regeneration depends on Insulin-like growth factor 1 receptor signaling.
Sci Rep. 2024 Sep 30;14(1):22661. doi: 10.1038/s41598-024-72783-4.
8
Aortic valve cell microenvironment: Considerations for developing a valve-on-chip.
Biophys Rev (Melville). 2021 Dec 10;2(4):041303. doi: 10.1063/5.0063608. eCollection 2021 Dec.
9
Leaflet remodeling reduces tricuspid valve function in a computational model.
J Mech Behav Biomed Mater. 2024 Apr;152:106453. doi: 10.1016/j.jmbbm.2024.106453. Epub 2024 Feb 2.
10
Aortic Stenosis Phenotypes and Precision Transcatheter Aortic Valve Implantation.
J Cardiovasc Dev Dis. 2023 Jun 21;10(7):265. doi: 10.3390/jcdd10070265.

本文引用的文献

1
Roles of transforming growth factor-β1 and OB-cadherin in porcine cardiac valve myofibroblast differentiation.
FASEB J. 2014 Oct;28(10):4551-62. doi: 10.1096/fj.14-254623. Epub 2014 Jul 9.
2
Effects of shear stress pattern and magnitude on mesenchymal transformation and invasion of aortic valve endothelial cells.
Biotechnol Bioeng. 2014 Nov;111(11):2326-37. doi: 10.1002/bit.25291. Epub 2014 Aug 5.
4
Simulation of planar soft tissues using a structural constitutive model: Finite element implementation and validation.
J Biomech. 2014 Jun 27;47(9):2043-54. doi: 10.1016/j.jbiomech.2014.03.014. Epub 2014 Mar 21.
5
Inflammatory, metabolic, and genetic mechanisms of vascular calcification.
Arterioscler Thromb Vasc Biol. 2014 Apr;34(4):715-23. doi: 10.1161/ATVBAHA.113.302070.
6
Photo-click living strategy for controlled, reversible exchange of biochemical ligands.
Adv Mater. 2014 Apr 23;26(16):2521-6. doi: 10.1002/adma.201304847. Epub 2014 Feb 12.
7
Immunogenicity in xenogeneic scaffold generation: antigen removal vs. decellularization.
Acta Biomater. 2014 May;10(5):1806-16. doi: 10.1016/j.actbio.2014.01.028. Epub 2014 Jan 31.
8
The role of valvular endothelial cell paracrine signaling and matrix elasticity on valvular interstitial cell activation.
Biomaterials. 2014 Apr;35(11):3596-606. doi: 10.1016/j.biomaterials.2014.01.005. Epub 2014 Jan 24.
9
Clickable, photodegradable hydrogels to dynamically modulate valvular interstitial cell phenotype.
Adv Healthc Mater. 2014 May;3(5):649-57. doi: 10.1002/adhm.201300288. Epub 2014 Jan 24.
10
Potential drug targets for calcific aortic valve disease.
Nat Rev Cardiol. 2014 Apr;11(4):218-31. doi: 10.1038/nrcardio.2014.1. Epub 2014 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验