IEEE Trans Image Process. 2014 Dec;23(12):5486-96. doi: 10.1109/TIP.2014.2362054.
Hair occlusion is one of the main challenges facing automatic lesion segmentation and feature extraction for skin cancer applications. We propose a novel method for simultaneously enhancing both light and dark hairs with variable widths, from dermoscopic images, without the prior knowledge of the hair color. We measure hair tubularness using a quaternion color curvature filter. We extract optimal hair features (tubularness, scale, and orientation) using Markov random field theory and multilabel optimization. We also develop a novel dual-channel matched filter to enhance hair pixels in the dermoscopic images while suppressing irrelevant skin pixels. We evaluate the hair enhancement capabilities of our method on hair-occluded images generated via our new hair simulation algorithm. Since hair enhancement is an intermediate step in a computer-aided diagnosis system for analyzing dermoscopic images, we validate our method and compare it to other methods by studying its effect on: 1) hair segmentation accuracy; 2) image inpainting quality; and 3) image classification accuracy. The validation results on 40 real clinical dermoscopic images and 94 synthetic data demonstrate that our approach outperforms competing hair enhancement methods.
头发遮挡是皮肤癌自动病变分割和特征提取面临的主要挑战之一。我们提出了一种新的方法,能够从皮肤镜图像中同时增强具有可变宽度的亮发和暗发,而无需事先了解头发颜色。我们使用四元颜色曲率滤波器来测量头发的管状性。我们使用马尔可夫随机场理论和多标签优化来提取最佳的头发特征(管状性、尺度和方向)。我们还开发了一种新的双通道匹配滤波器,以增强皮肤镜图像中的头发像素,同时抑制不相关的皮肤像素。我们通过使用我们的新头发模拟算法生成的头发遮挡图像来评估我们的方法的头发增强能力。由于头发增强是分析皮肤镜图像的计算机辅助诊断系统的中间步骤,因此我们通过研究其对以下方面的影响来验证我们的方法并将其与其他方法进行比较:1)头发分割准确性;2)图像修复质量;3)图像分类准确性。在 40 张真实的临床皮肤镜图像和 94 张合成数据上的验证结果表明,我们的方法优于竞争的头发增强方法。