Shkarayev Maxim S, Zia R K P
Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011, USA.
Department of Physics & Astronomy, Iowa State University, Ames, Iowa 50011, USA and Physics Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):032107. doi: 10.1103/PhysRevE.90.032107. Epub 2014 Sep 8.
Motivated by fundamental issues in nonequilibrium statistical mechanics, we study the venerable susceptible-infected-susceptible (SIS) model of disease spreading in an idealized, simple setting. Using Monte Carlo and analytic techniques, we consider a fully connected, unidirectional network of odd number of nodes, each having an equal number of in- and out-degrees. With the standard SIS dynamics at high infection rates, this system settles into an active nonequilibrium steady state. We find the exact probability distribution and explore its implications for nonequilibrium statistical mechanics, such as the presence of persistent probability currents.
受非平衡统计力学基本问题的驱动,我们在一个理想化的简单设定中研究了经典的易感-感染-易感(SIS)疾病传播模型。我们使用蒙特卡罗方法和解析技术,考虑一个由奇数个节点组成的全连接单向网络,每个节点的入度和出度相等。在高感染率下采用标准的SIS动力学,该系统会进入一个活跃的非平衡稳态。我们找到了精确的概率分布,并探讨了其对非平衡统计力学的影响,例如持续概率流的存在。