Suppr超能文献

周期性波纹通道中布朗游动者的棘轮效应:一种简化的福克-普朗克方法。

Ratcheting of Brownian swimmers in periodically corrugated channels: a reduced Fokker-Planck approach.

作者信息

Yariv Ehud, Schnitzer Ory

机构信息

Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):032115. doi: 10.1103/PhysRevE.90.032115. Epub 2014 Sep 15.

Abstract

We consider the motion of self-propelling Brownian particles in two-dimensional periodically corrugated channels. The point-size swimmers propel themselves in a direction which fluctuates by Brownian rotation; in addition, they undergo Brownian motion. The impermeability of the channel boundaries in conjunction with an asymmetry of the unit-cell geometry enables ratcheting, where a nonzero particle current is animated along the channel. This effect is studied here in the continuum limit using a diffusion-advection description of the probability density in a four-dimensional position-orientation space. Specifically, the mean particle velocity is calculated using macrotransport (generalized Taylor-dispersion) theory. This description reveals that the ratcheting mechanism is indirect: swimming gives rise to a biased spatial particle distribution which in turn results in a purely diffusive net current. For a slowly varying channel geometry, the dependence of this current upon the channel geometry and fluid-particle parameters is studied via a long-wave approximation over a reduced two-dimensional space. This allows for a straightforward seminumerical solution. In the limit where both rotational diffusion and swimming are strong, we find an asymptotic approximation to the particle current, scaling inversely with the square of the swimming Péclet number. For a given swimmer-fluid system, this limit is physically realized with increasing unit-cell size.

摘要

我们考虑二维周期性波纹通道中自推进布朗粒子的运动。点大小的游动者在一个因布朗旋转而波动的方向上推进自身;此外,它们还经历布朗运动。通道边界的不可渗透性与单胞几何形状的不对称性导致了棘轮效应,即沿通道产生非零的粒子流。本文在连续极限下,使用四维位置 - 取向空间中概率密度的扩散 - 平流描述来研究这种效应。具体而言,平均粒子速度是使用宏观输运(广义泰勒弥散)理论计算得出的。这种描述表明,棘轮机制是间接的:游动导致有偏差的空间粒子分布,进而产生纯扩散净电流。对于缓慢变化的通道几何形状,通过在简化的二维空间上的长波近似来研究该电流对通道几何形状和流体 - 粒子参数的依赖性。这允许进行直接的半数值求解。在旋转扩散和游动都很强的极限情况下,我们找到了粒子流的渐近近似,其与游动佩克莱数的平方成反比缩放。对于给定的游动者 - 流体系统,随着单胞尺寸的增加,这个极限在物理上得以实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验