Witthaut Dirk, Timme Marc
Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany.
Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany and Institute for Nonlinear Dynamics, Faculty of Physics, University of Göttingen, 37077 Göttingen, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):032917. doi: 10.1103/PhysRevE.90.032917. Epub 2014 Sep 19.
The Kuramoto model constitutes a paradigmatic model for the dissipative collective dynamics of coupled oscillators, characterizing in particular the emergence of synchrony (phase locking). Here we present a classical Hamiltonian (and thus conservative) system with 2N state variables that in its action-angle representation exactly yields Kuramoto dynamics on N-dimensional invariant manifolds. We show that locking of the phase of one oscillator on a Kuramoto manifold to the average phase emerges where the transverse Hamiltonian action dynamics of that specific oscillator becomes unstable. Moreover, the inverse participation ratio of the Hamiltonian dynamics perturbed off the manifold indicates the global synchronization transition point for finite N more precisely than the standard Kuramoto order parameter. The uncovered Kuramoto dynamics in Hamiltonian systems thus distinctly links dissipative to conservative dynamics.
Kuramoto模型构成了耦合振子耗散集体动力学的一个典范模型,特别表征了同步(锁相)的出现。在此,我们提出一个具有2N个状态变量的经典哈密顿量(因而也是保守的)系统,该系统在其作用 - 角表示中,在N维不变流形上精确地产生Kuramoto动力学。我们表明,在特定振子的横向哈密顿量作用动力学变得不稳定的地方,该振子在Kuramoto流形上的相位锁定到平均相位就会出现。此外,偏离流形的哈密顿量动力学的逆参与率比标准Kuramoto序参量更精确地指示了有限N时的全局同步转变点。因此,哈密顿系统中发现的Kuramoto动力学将耗散动力学与保守动力学清晰地联系起来。