Hartmann Luise, Stephenson Christine F, Verkamp Stephanie R, Johnson Krystal R, Burnworth Bettina, Hammock Kelle, Brodersen Lisa Eidenschink, de Baca Monica E, Wells Denise A, Loken Michael R, Zehentner Barbara K
HematoLogics Inc., Seattle, WA.
Clin Chem. 2014 Dec;60(12):1558-68. doi: 10.1373/clinchem.2014.227785. Epub 2014 Oct 15.
Array comparative genomic hybridization (aCGH) has become a powerful tool for analyzing hematopoietic neoplasms and identifying genome-wide copy number changes in a single assay. aCGH also has superior resolution compared with fluorescence in situ hybridization (FISH) or conventional cytogenetics. Integration of single nucleotide polymorphism (SNP) probes with microarray analysis allows additional identification of acquired uniparental disomy, a copy neutral aberration with known potential to contribute to tumor pathogenesis. However, a limitation of microarray analysis has been the inability to detect clonal heterogeneity in a sample.
This study comprised 16 samples (acute myeloid leukemia, myelodysplastic syndrome, chronic lymphocytic leukemia, plasma cell neoplasm) with complex cytogenetic features and evidence of clonal evolution. We used an integrated manual peak reassignment approach combining analysis of aCGH and SNP microarray data for characterization of subclonal abnormalities. We compared array findings with results obtained from conventional cytogenetic and FISH studies.
Clonal heterogeneity was detected in 13 of 16 samples by microarray on the basis of log2 values. Use of the manual peak reassignment analysis approach improved resolution of the sample's clonal composition and genetic heterogeneity in 10 of 13 (77%) patients. Moreover, in 3 patients, clonal disease progression was revealed by array analysis that was not evident by cytogenetic or FISH studies.
Genetic abnormalities originating from separate clonal subpopulations can be identified and further characterized by combining aCGH and SNP hybridization results from 1 integrated microarray chip by use of the manual peak reassignment technique. Its clinical utility in comparison to conventional cytogenetic or FISH studies is demonstrated.
阵列比较基因组杂交(aCGH)已成为分析造血系统肿瘤和在单一检测中识别全基因组拷贝数变化的强大工具。与荧光原位杂交(FISH)或传统细胞遗传学相比,aCGH还具有更高的分辨率。将单核苷酸多态性(SNP)探针与微阵列分析相结合,能够进一步识别获得性单亲二体,这是一种已知可能参与肿瘤发病机制的拷贝中性畸变。然而,微阵列分析的一个局限性在于无法检测样本中的克隆异质性。
本研究包含16个具有复杂细胞遗传学特征和克隆进化证据的样本(急性髓系白血病、骨髓增生异常综合征、慢性淋巴细胞白血病、浆细胞肿瘤)。我们采用了一种综合的手动峰重新分配方法,结合aCGH和SNP微阵列数据的分析来表征亚克隆异常。我们将阵列分析结果与传统细胞遗传学和FISH研究结果进行了比较。
基于log2值,通过微阵列在16个样本中的13个中检测到了克隆异质性。使用手动峰重新分配分析方法提高了13名患者中10名(77%)患者样本的克隆组成和遗传异质性分辨率。此外,在3名患者中,阵列分析揭示了克隆性疾病进展,而细胞遗传学或FISH研究未发现明显进展。
通过使用手动峰重新分配技术,结合来自1个集成微阵列芯片的aCGH和SNP杂交结果,可以识别并进一步表征源自不同克隆亚群的基因异常。证明了其与传统细胞遗传学或FISH研究相比的临床实用性。