Siegismund Daniel, Schroeter Anja, Lüdecke Claudia, Undisz Andreas, Jandt Klaus D, Roth Martin, Rettenmayr Markus, Schuster Stefan, Germerodt Sebastian
a Otto Schott Institute of Materials Research (OSIM) , Friedrich Schiller University Jena , Jena , Germany.
Biofouling. 2014 Oct;30(9):1023-33. doi: 10.1080/08927014.2014.958999.
The dynamics of adhesion and growth of bacterial cells on biomaterial surfaces play an important role in the formation of biofilms. The surface properties of biomaterials have a major impact on cell adhesion processes, eg the random/non-cooperative adhesion of bacteria. In the present study, the spatial arrangement of Escherichia coli on different biomaterials is investigated in a time series during the first hours after exposure. The micrographs are analyzed via an image processing routine and the resulting point patterns are evaluated using second order statistics. Two main adhesion mechanisms can be identified: random adhesion and non-random processes. Comparison with an appropriate null-model quantifies the transition between the two processes with statistical significance. The fastest transition to non-random processes was found to occur after adhesion on PTFE for 2-3 h. Additionally, determination of cell and cluster parameters via image processing gives insight into surface influenced differences in bacterial micro-colony formation.
细菌细胞在生物材料表面的黏附与生长动力学在生物膜形成过程中起着重要作用。生物材料的表面特性对细胞黏附过程有重大影响,例如细菌的随机/非协同黏附。在本研究中,对暴露后最初几小时内不同生物材料上大肠杆菌的空间排列进行了时间序列研究。通过图像处理程序对显微照片进行分析,并使用二阶统计量对所得点模式进行评估。可以识别出两种主要的黏附机制:随机黏附与非随机过程。与适当的零模型进行比较可量化这两个过程之间具有统计学意义的转变。发现黏附在聚四氟乙烯上2 - 3小时后,向非随机过程的转变最快。此外,通过图像处理确定细胞和聚集体参数有助于深入了解表面对细菌微菌落形成差异的影响。