Trujillano Daniel, Bullich Gemma, Ossowski Stephan, Ballarín José, Torra Roser, Estivill Xavier, Ars Elisabet
Genomics and Disease Group, Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG) Dr. Aiguader 88, 08003 Barcelona, Catalonia, Spain ; Universitat Pompeu Fabra (UPF) Barcelona, Catalonia, Spain ; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM) 08003 Barcelona, Catalonia, Spain ; CIBER in Epidemiology and Public Health (CIBERESP) Barcelona, Catalonia, Spain.
Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain ; Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Universitat Autònoma de Barcelona REDinREN, Instituto de Investigación Carlos III, Barcelona, Catalonia, Spain.
Mol Genet Genomic Med. 2014 Sep;2(5):412-21. doi: 10.1002/mgg3.82. Epub 2014 May 23.
Molecular diagnostics of autosomal dominant polycystic kidney disease (ADPKD) relies on mutation screening of PKD1 and PKD2, which is complicated by extensive allelic heterogeneity and the presence of six highly homologous sequences of PKD1. To date, specific sequencing of PKD1 requires laborious long-range amplifications. The high cost and long turnaround time of PKD1 and PKD2 mutation analysis using conventional techniques limits its widespread application in clinical settings. We performed targeted next-generation sequencing (NGS) of PKD1 and PKD2. Pooled barcoded DNA patient libraries were enriched by in-solution hybridization with PKD1 and PKD2 capture probes. Bioinformatics analysis was performed using an in-house developed pipeline. We validated the assay in a cohort of 36 patients with previously known PKD1 and PKD2 mutations and five control individuals. Then, we used the same assay and bioinformatics analysis in a discovery cohort of 12 uncharacterized patients. We detected 35 out of 36 known definitely, highly likely, and likely pathogenic mutations in the validation cohort, including two large deletions. In the discovery cohort, we detected 11 different pathogenic mutations in 10 out of 12 patients. This study demonstrates that laborious long-range PCRs of the repeated PKD1 region can be avoided by in-solution enrichment of PKD1 and PKD2 and NGS. This strategy significantly reduces the cost and time for simultaneous PKD1 and PKD2 sequence analysis, facilitating routine genetic diagnostics of ADPKD.
常染色体显性多囊肾病(ADPKD)的分子诊断依赖于PKD1和PKD2的突变筛查,这因广泛的等位基因异质性以及PKD1的六个高度同源序列的存在而变得复杂。迄今为止,PKD1的特异性测序需要费力的长距离扩增。使用传统技术进行PKD1和PKD2突变分析的高成本和长周转时间限制了其在临床环境中的广泛应用。我们对PKD1和PKD2进行了靶向新一代测序(NGS)。通过与PKD1和PKD2捕获探针进行溶液内杂交,富集带有条形码的患者DNA混合文库。使用内部开发的流程进行生物信息学分析。我们在一组36例先前已知PKD1和PKD2突变的患者以及5名对照个体中验证了该检测方法。然后,我们在一个由12例未确诊患者组成的发现队列中使用相同的检测方法和生物信息学分析。我们在验证队列中明确检测到了36个已知的、极有可能和有可能致病的突变中的35个,包括两个大片段缺失。在发现队列中,我们在12例患者中的10例中检测到了11种不同的致病突变。这项研究表明,通过PKD1和PKD2的溶液内富集和NGS,可以避免对重复的PKD1区域进行费力的长距离PCR。该策略显著降低了同时进行PKD1和PKD2序列分析的成本和时间,有助于ADPKD的常规基因诊断。