Jing Benxin, Abot Rosary C T, Zhu Yingxi
Department of Chemical and Biomolecular Engineering, University of Notre Dame , 182 Fitzpatrick Hall, Notre Dame, Indiana 46556, United States.
J Phys Chem B. 2014 Nov 20;118(46):13175-82. doi: 10.1021/jp5074945. Epub 2014 Nov 7.
The interaction of nanoparticles with cell membranes is critical to understand and control the structural change and molecular transport of cell membranes for medicines and medical diagnostics, in which hydrophobic interaction is often involved. We examine the specific ion effect on the interaction of semihydrophobic nanoparticle with zwitterionic phospholipid bilayer in aqueous media added with different types of salts. Specifically, we compare the effect of different anions or cations on the adsorption of carboxyl-functionalized polystyrene nanoparticle on supported lipid bilayer and its induced bilayer disruption. By adding different anions at the same ionic concentration to the nanoparticle-lipid bilayer interface, we observe that the growth rate of nanoparticle-induced lipid-poor regions follows the exact Hofmeister anion order of CH3COO(-) > Cl(-) > NO3(-) ≫ SCN(-), suggesting the regulated hydrophobic interaction by anions. In contrast, the specific cation effect on nanoparticle-induced disruption rate of lipid bilayer does not follow the Hofmeister cation order and instead exhibits a trend of Cs(+) ∼ Rb(+) > Na(+) ≫ N(CH3)4(+). It is suggested that the effect of specific ions can be exploited as a simple and efficient approach to modify the nanoparticles-biomembrane interactions with the implication from drug delivery to nontoxic nanomaterial design.
纳米颗粒与细胞膜的相互作用对于理解和控制用于药物和医学诊断的细胞膜的结构变化及分子运输至关重要,其中常常涉及疏水相互作用。我们研究了在添加不同类型盐的水性介质中,特定离子对半疏水纳米颗粒与两性离子磷脂双层相互作用的影响。具体而言,我们比较了不同阴离子或阳离子对羧基功能化聚苯乙烯纳米颗粒在支撑脂质双层上的吸附及其诱导的双层破坏的影响。通过在纳米颗粒 - 脂质双层界面处添加相同离子浓度的不同阴离子,我们观察到纳米颗粒诱导的贫脂区域的生长速率遵循确切的霍夫迈斯特阴离子顺序:CH3COO(-) > Cl(-) > NO3(-) ≫ SCN(-),这表明阴离子对疏水相互作用具有调节作用。相反,特定阳离子对纳米颗粒诱导的脂质双层破坏速率的影响并不遵循霍夫迈斯特阳离子顺序,而是呈现出Cs(+) ∼ Rb(+) > Na(+) ≫ N(CH3)4(+)的趋势。研究表明,特定离子的作用可被用作一种简单有效的方法来修饰纳米颗粒与生物膜的相互作用,这对于从药物递送设计到无毒纳米材料设计都具有重要意义。