Suppr超能文献

通过应变工程实现全内反射下化学气相沉积石墨烯的大可调谐光吸收。

Large tunable optical absorption of CVD graphene under total internal reflection by strain engineering.

作者信息

Dong Bin, Wang Peng, Liu Zhi-Bo, Chen Xu-Dong, Jiang Wen-Shuai, Xin Wei, Xing Fei, Tian Jian-Guo

出版信息

Nanotechnology. 2014 Nov 14;25(45):455707. doi: 10.1088/0957-4484/25/45/455707. Epub 2014 Oct 24.

Abstract

We have developed a method to tune polarization-dependent optical absorption of large-scale chemical vapor deposition (CVD) graphene under total internal reflection (TIR) by strain engineering. Through control of the strain direction, the optical absorption of graphene for transverse magnetic or transverse electric waves can be separately tuned. Strain-induced modulation of the optical absorption has been theoretically expected when light is normally incident through graphene. Under TIR, however, we experimentally observed a significant increase in the strain-induced tunability of optical absorption for CVD graphene, with the modulation efficiency of optical absorption in monolayer graphene increasing by a factor of three times that for normal incidence. We conclude that the strain sensitivity of optical absorption of graphene under TIR offers significant potential for application in many areas such as ultra-thin optical devices and strain sensors.

摘要

我们已经开发出一种方法,通过应变工程在全内反射(TIR)条件下调节大规模化学气相沉积(CVD)石墨烯的偏振相关光吸收。通过控制应变方向,可以分别调节石墨烯对横向磁波或横向电波的光吸收。当光垂直入射穿过石墨烯时,理论上预期会出现应变诱导的光吸收调制。然而,在全内反射条件下,我们通过实验观察到CVD石墨烯的应变诱导光吸收可调性显著增加,单层石墨烯中光吸收的调制效率比垂直入射时提高了两倍。我们得出结论,全内反射条件下石墨烯光吸收的应变敏感性在超薄光学器件和应变传感器等许多领域具有巨大的应用潜力。

相似文献

1
Large tunable optical absorption of CVD graphene under total internal reflection by strain engineering.
Nanotechnology. 2014 Nov 14;25(45):455707. doi: 10.1088/0957-4484/25/45/455707. Epub 2014 Oct 24.
2
Tuning optical conductivity of large-scale CVD graphene by strain engineering.
Adv Mater. 2014 Feb;26(7):1081-6. doi: 10.1002/adma.201304156. Epub 2013 Dec 11.
4
Wide Angle Dynamically Tunable Enhanced Infrared Absorption on Large-Area Nanopatterned Graphene.
ACS Nano. 2019 Jan 22;13(1):421-428. doi: 10.1021/acsnano.8b06601. Epub 2018 Dec 11.
5
Polycrystallinity and stacking in CVD graphene.
Acc Chem Res. 2013 Oct 15;46(10):2286-96. doi: 10.1021/ar300190z.
6
Making transient optical reflection of graphene polarization dependent.
Opt Express. 2015 Sep 21;23(19):24177-88. doi: 10.1364/OE.23.024177.
7
Designed CVD growth of graphene via process engineering.
Acc Chem Res. 2013 Oct 15;46(10):2263-74. doi: 10.1021/ar400057n.
8
Toward 300 mm wafer-scalable high-performance polycrystalline chemical vapor deposited graphene transistors.
ACS Nano. 2014 Oct 28;8(10):10471-9. doi: 10.1021/nn5038493. Epub 2014 Sep 15.
9
Efficient manipulation of graphene absorption by a simple dielectric cylinder.
Opt Express. 2015 Jul 27;23(15):18975-87. doi: 10.1364/OE.23.018975.
10
Work function engineering of graphene electrode via chemical doping.
ACS Nano. 2010 May 25;4(5):2689-94. doi: 10.1021/nn1005478.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验