Suppr超能文献

Effects of adenyl-5'-imidodiphosphate and vanadate Ion on the intermolecular cross-linking of Ca2(+)-ATPase in the sarcoplasmic reticulum membrane with N,N'-(1,4-phenylene)bismaleimide.

作者信息

Yamasaki K, Yamamoto T

机构信息

Department of Biology, Faculty of Science, Osaka University.

出版信息

J Biochem. 1989 Dec;106(6):1114-20. doi: 10.1093/oxfordjournals.jbchem.a122975.

Abstract

The functional significance of the molecular interaction of Ca2(+)-ATPase in the sarcoplasmic reticulum (SR) membrane was examined using intermolecular cross-linking of Ca2(+)-ATPase with N,N'-(1,4-phenylene)bismaleimide (PBM). When SR vesicles were allowed to react with 1 mM PBM at pH 7 and 23 degrees C for various intervals and subjected to SDS-PAGE, the amount of the major band of monomeric ATPase decreased with a half life of about 20 min. Higher orders of oligomers were concurrently formed without accumulation of any particular species of oligomer. When SR vesicles were allowed to react with 1 mM PBM in the presence of 1 mM adenyl-5'-imidodiphosphate (AMP-PNP), the rate of oligomerization was markedly reduced and the amount of dimeric Ca2(+)-ATPase increased with time. After 1 h, more than 40% of the Ca2(+)-ATPase had accumulated in the dimeric form. When 1 mol of fluorescein isothiocyanate (FITC) was bound per mol of ATPase, the effects of AMP-PNP on the cross-linking with PBM were completely abolished. When SR vesicles were treated with PBM in the presence of 0.1 mM vanadate in Ca2+ free medium, the oligomerization of the Ca2(+)-ATPase by PBM was strongly inhibited. The vanadate effect on the cross-link formation was completely removed by the presence of Ca2+ and AMP-PNP in the reaction medium. When SR vesicles were pretreated with PBM in the presence of AMP-PNP and digested with trypsin for a short time, the dimeric ATPase was degraded to a peptide with an apparent molecular mass of about 170 kDa.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验