Suppr超能文献

扩展的帕隆多博弈与布朗棘轮:强帕隆多效应和弱帕隆多效应

Extended Parrondo's game and Brownian ratchets: strong and weak Parrondo effect.

作者信息

Wu Degang, Szeto Kwok Yip

机构信息

Department of Phyiscs, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, HKSAR, China.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022142. doi: 10.1103/PhysRevE.89.022142. Epub 2014 Feb 27.

Abstract

Inspired by the flashing ratchet, Parrondo's game presents an apparently paradoxical situation. Parrondo's game consists of two individual games, game A and game B. Game A is a slightly losing coin-tossing game. Game B has two coins, with an integer parameter M. If the current cumulative capital (in discrete unit) is a multiple of M, an unfavorable coin p(b) is used, otherwise a favorable p(g) coin is used. Paradoxically, a combination of game A and game B could lead to a winning game, which is the Parrondo effect. We extend the original Parrondo's game to include the possibility of M being either M(1) or M(2). Also, we distinguish between strong Parrondo effect, i.e., two losing games combine to form a winning game, and weak Parrondo effect, i.e., two games combine to form a better-performing game. We find that when M(2) is not a multiple of M(1), the combination of B(M(1)) and B(M(2)) has strong and weak Parrondo effect for some subsets in the parameter space (p(b),p(g)), while there is neither strong nor weak effect when M(2) is a multiple of M(1). Furthermore, when M(2) is not a multiple of M(1), a stochastic mixture of game A may cancel the strong and weak Parrondo effect. Following a discretization scheme in the literature of Parrondo's game, we establish a link between our extended Parrondo's game with the analysis of discrete Brownian ratchet. We find a relation between the Parrondo effect of our extended model to the macroscopic bias in a discrete ratchet. The slope of a ratchet potential can be mapped to the fair game condition in the extended model, so that under some conditions, the macroscopic bias in a discrete ratchet can provide a good predictor for the game performance of the extended model. On the other hand, our extended model suggests a design of a ratchet in which the potential is a mixture of two periodic potentials.

摘要

受闪烁棘轮的启发,帕隆多博弈呈现出一种看似矛盾的情形。帕隆多博弈由两个独立的博弈组成,博弈A和博弈B。博弈A是一个略输的抛硬币游戏。博弈B有两枚硬币,有一个整数参数M。如果当前累计资金(以离散单位计)是M的倍数,则使用不利硬币p(b),否则使用有利硬币p(g)。矛盾的是,博弈A和博弈B的组合可能导致一个赢的博弈,即帕隆多效应。我们扩展了原始的帕隆多博弈,使其包含M为M(1)或M(2)的可能性。此外,我们区分了强帕隆多效应,即两个输的博弈组合形成一个赢的博弈,以及弱帕隆多效应,即两个博弈组合形成一个表现更好的博弈。我们发现,当M(2)不是M(1)的倍数时,B(M(1))和B(M(2))的组合在参数空间(p(b),p(g))的某些子集中具有强和弱帕隆多效应,而当M(2)是M(1)的倍数时,则既没有强效应也没有弱效应。此外,当M(2)不是M(1)的倍数时,博弈A的随机混合可能会消除强和弱帕隆多效应。遵循帕隆多博弈文献中的离散化方案,我们在扩展的帕隆多博弈与离散布朗棘轮的分析之间建立了联系。我们发现扩展模型的帕隆多效应与离散棘轮中的宏观偏差之间的关系。棘轮势的斜率可以映射到扩展模型中的公平博弈条件,因此在某些条件下,离散棘轮中的宏观偏差可以为扩展模型的博弈性能提供一个良好的预测指标。另一方面,我们的扩展模型提出了一种棘轮的设计,其中势是两个周期势的混合。

相似文献

1
Extended Parrondo's game and Brownian ratchets: strong and weak Parrondo effect.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022142. doi: 10.1103/PhysRevE.89.022142. Epub 2014 Feb 27.
2
Brownian ratchets and Parrondo's games.
Chaos. 2001 Sep;11(3):705-714. doi: 10.1063/1.1395623.
3
Parrondo's games based on complex networks and the paradoxical effect.
PLoS One. 2013 Jul 2;8(7):e67924. doi: 10.1371/journal.pone.0067924. Print 2013.
4
Implementing Parrondo's paradox with two-coin quantum walks.
R Soc Open Sci. 2018 Feb 14;5(2):171599. doi: 10.1098/rsos.171599. eCollection 2018 Feb.
5
The flashing Brownian ratchet and Parrondo's paradox.
R Soc Open Sci. 2018 Jan 24;5(1):171685. doi: 10.1098/rsos.171685. eCollection 2018 Jan.
6
Parrondo paradoxical walk using four-sided quantum coins.
Phys Rev E. 2020 Jul;102(1-1):012213. doi: 10.1103/PhysRevE.102.012213.
7
Parrondo effect in quantum coin-toss simulations.
Phys Rev E. 2020 May;101(5-1):052212. doi: 10.1103/PhysRevE.101.052212.
8
Influence analysis of network evolution on Parrondo effect.
Biosystems. 2024 Feb;236:105124. doi: 10.1016/j.biosystems.2024.105124. Epub 2024 Jan 18.
9
Generalized Solutions of Parrondo's Games.
Adv Sci (Weinh). 2020 Nov 7;7(24):2001126. doi: 10.1002/advs.202001126. eCollection 2020 Dec.
10
Exact probability distribution functions for Parrondo's games.
Phys Rev E. 2016 Dec;94(6-1):060102. doi: 10.1103/PhysRevE.94.060102. Epub 2016 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验