Mirigian Stephen, Schweizer Kenneth S
Department of Materials Science, University of Illinois, Urbana, Illinois 61801, USA.
J Chem Phys. 2014 Oct 28;141(16):161103. doi: 10.1063/1.4900507.
Two decades of experimental research indicate that spatial confinement of glass-forming molecular and polymeric liquids results in major changes of their slow dynamics beginning at large confinement distances. A fundamental understanding remains elusive given the generic complexity of activated relaxation in supercooled liquids and the major complications of geometric confinement, interfacial effects, and spatial inhomogeneity. We construct a predictive, quantitative, force-level theory of relaxation in free-standing films for the central question of the nature of the spatial mobility gradient. The key new idea is that vapor interfaces speed up barrier hopping in two distinct, but coupled, ways by reducing near surface local caging constraints and spatially long range collective elastic distortion. Effective vitrification temperatures, dynamic length scales, and mobile layer thicknesses naturally follow. Our results provide a unified basis for central observations of dynamic and pseudo-thermodynamic measurements.
二十年的实验研究表明,从较大的受限距离开始,玻璃态形成分子液体和聚合液体的空间受限会导致其慢动力学发生重大变化。鉴于过冷液体中活化弛豫的一般复杂性以及几何受限、界面效应和空间不均匀性的主要复杂性,目前仍难以获得基本的理解。针对空间迁移率梯度的本质这一核心问题,我们构建了一个关于独立薄膜中弛豫的预测性、定量的力水平理论。关键的新观点是,气相界面通过减少近表面局部笼蔽约束和空间长程集体弹性畸变,以两种不同但相互耦合的方式加速势垒跳跃。有效的玻璃化转变温度、动态长度尺度和移动层厚度自然随之而来。我们的结果为动态和伪热力学测量的核心观测提供了统一的基础。