Li Yehua, Guan Yongtao
Department of Statistics and Statistical Laboratory, Iowa State University, Ames, IA 50011.
Department of Management Science, University of Miami, Coral Gables, FL 33124.
J Am Stat Assoc. 2014 Aug 1;109(507):1205-1215. doi: 10.1080/01621459.2014.885434.
In disease surveillance applications, the disease events are modeled by spatio-temporal point processes. We propose a new class of semiparametric generalized linear mixed model for such data, where the event rate is related to some known risk factors and some unknown latent random effects. We model the latent spatio-temporal process as spatially correlated functional data, and propose Poisson maximum likelihood and composite likelihood methods based on spline approximations to estimate the mean and covariance functions of the latent process. By performing functional principal component analysis to the latent process, we can better understand the correlation structure in the point process. We also propose an empirical Bayes method to predict the latent spatial random effects, which can help highlight hot areas with unusually high event rates. Under an increasing domain and increasing knots asymptotic framework, we establish the asymptotic distribution for the parametric components in the model and the asymptotic convergence rates for the functional principal component estimators. We illustrate the methodology through a simulation study and an application to the Connecticut Tumor Registry data.
在疾病监测应用中,疾病事件通过时空点过程进行建模。我们针对此类数据提出了一类新的半参数广义线性混合模型,其中事件发生率与一些已知风险因素和一些未知的潜在随机效应相关。我们将潜在的时空过程建模为空间相关的函数数据,并基于样条近似提出泊松最大似然法和复合似然法,以估计潜在过程的均值和协方差函数。通过对潜在过程进行函数主成分分析,我们可以更好地理解点过程中的相关结构。我们还提出了一种经验贝叶斯方法来预测潜在的空间随机效应,这有助于突出事件发生率异常高的热点区域。在增长域和增加节点的渐近框架下,我们建立了模型中参数成分的渐近分布以及函数主成分估计量的渐近收敛速度。我们通过模拟研究和对康涅狄格肿瘤登记数据的应用来说明该方法。