Suppr超能文献

无序准自由费米子熵的面积律标度

Area law scaling for the entropy of disordered quasifree fermions.

作者信息

Pastur L, Slavin V

机构信息

B. I. Verkin Institute for Low Temperatures and Engineering, 61103 Kharkiv, Ukraine.

出版信息

Phys Rev Lett. 2014 Oct 10;113(15):150404. doi: 10.1103/PhysRevLett.113.150404. Epub 2014 Oct 9.

Abstract

We study theoretically and numerically the entanglement entropy of the d-dimensional free fermions whose one-body Hamiltonian is the Anderson model. Using the basic facts of the exponential Anderson localization, we show first that the disorder averaged entanglement entropy ⟨S(Λ)⟩ of the d dimension cube Λ of side length l admits the area law scaling ⟨S(Λ)⟩ ∼ l((d-1)),l ≫ 1, even in the gapless case, thereby manifesting the area law in the mean for our model. For d = 1 and l ≫ 1 we obtain then asymptotic bounds for the entanglement entropy of typical realizations of disorder and use them to show that the entanglement entropy is not self-averaging, i.e., has nonvanishing random fluctuations even if l ≫ 1.

摘要

我们从理论和数值上研究了一体哈密顿量为安德森模型的d维自由费米子的纠缠熵。利用指数安德森局域化的基本事实,我们首先表明,即使在无隙情况下,边长为l的d维立方体Λ的无序平均纠缠熵⟨S(Λ)⟩也服从面积律标度⟨S(Λ)⟩ ∼ l((d - 1)),l ≫ 1,从而在均值上体现了我们模型的面积律。对于d = 1且l ≫ 1的情况,我们接着得到了无序典型实现的纠缠熵的渐近界,并利用它们表明纠缠熵不是自平均的,即即使l ≫ 1,也存在非零的随机涨落。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验