Suppr超能文献

一种基于平稳小波熵的聚类方法能准确预测基因表达。

A stationary wavelet entropy-based clustering approach accurately predicts gene expression.

作者信息

Nguyen Nha, Vo An, Choi Inchan, Won Kyoung-Jae

机构信息

1 Department of Genetics, School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania.

出版信息

J Comput Biol. 2015 Mar;22(3):236-49. doi: 10.1089/cmb.2014.0221. Epub 2014 Nov 10.

Abstract

Studying epigenetic landscapes is important to understand the condition for gene regulation. Clustering is a useful approach to study epigenetic landscapes by grouping genes based on their epigenetic conditions. However, classical clustering approaches that often use a representative value of the signals in a fixed-sized window do not fully use the information written in the epigenetic landscapes. Clustering approaches to maximize the information of the epigenetic signals are necessary for better understanding gene regulatory environments. For effective clustering of multidimensional epigenetic signals, we developed a method called Dewer, which uses the entropy of stationary wavelet of epigenetic signals inside enriched regions for gene clustering. Interestingly, the gene expression levels were highly correlated with the entropy levels of epigenetic signals. Dewer separates genes better than a window-based approach in the assessment using gene expression and achieved a correlation coefficient above 0.9 without using any training procedure. Our results show that the changes of the epigenetic signals are useful to study gene regulation.

摘要

研究表观遗传景观对于理解基因调控的条件很重要。聚类是一种通过根据基因的表观遗传条件对基因进行分组来研究表观遗传景观的有用方法。然而,经典的聚类方法通常在固定大小的窗口中使用信号的代表性值,并未充分利用表观遗传景观中所蕴含的信息。为了更好地理解基因调控环境,需要采用能够最大化表观遗传信号信息的聚类方法。为了对多维表观遗传信号进行有效聚类,我们开发了一种名为Dewer的方法,该方法利用富集区域内表观遗传信号的平稳小波熵进行基因聚类。有趣的是,基因表达水平与表观遗传信号的熵水平高度相关。在使用基因表达进行的评估中,Dewer比基于窗口的方法能更好地分离基因,并且在不使用任何训练过程的情况下实现了高于0.9的相关系数。我们的结果表明,表观遗传信号的变化对于研究基因调控是有用的。

相似文献

1
A stationary wavelet entropy-based clustering approach accurately predicts gene expression.
J Comput Biol. 2015 Mar;22(3):236-49. doi: 10.1089/cmb.2014.0221. Epub 2014 Nov 10.
4
Improved wavelet entropy calculation with window functions and its preliminary application to study intracranial pressure.
Comput Biol Med. 2013 Jun;43(5):425-33. doi: 10.1016/j.compbiomed.2013.01.022. Epub 2013 Mar 15.
5
Pattern classification of phylogeny signals.
Stat Appl Genet Mol Biol. 2008;7(1):Article 30. doi: 10.2202/1544-6115.1289. Epub 2008 Oct 17.
6
Divisive Correlation Clustering Algorithm (DCCA) for grouping of genes: detecting varying patterns in expression profiles.
Bioinformatics. 2008 Jun 1;24(11):1359-66. doi: 10.1093/bioinformatics/btn133. Epub 2008 Apr 10.
7
Analysis of a Gibbs sampler method for model-based clustering of gene expression data.
Bioinformatics. 2008 Jan 15;24(2):176-83. doi: 10.1093/bioinformatics/btm562. Epub 2007 Nov 22.
8
Wavelet transformation and cluster ensemble for gene expression analysis.
Int J Bioinform Res Appl. 2005;1(4):447-60. doi: 10.1504/IJBRA.2005.008447.
10
A wavelet-based feature vector model for DNA clustering.
Genet Mol Res. 2015 Dec 29;14(4):19163-72. doi: 10.4238/2015.December.29.26.

本文引用的文献

1
A wavelet approach to detect enriched regions and explore epigenomic landscapes.
J Comput Biol. 2014 Nov;21(11):846-54. doi: 10.1089/cmb.2014.0095. Epub 2014 Jul 29.
2
Sample entropy-based analysis of differential and traditional training effects on dynamic balance in healthy people.
J Mot Behav. 2014;46(2):73-82. doi: 10.1080/00222895.2013.866932. Epub 2014 Jan 21.
3
A wavelet-based method to exploit epigenomic language in the regulatory region.
Bioinformatics. 2014 Apr 1;30(7):908-14. doi: 10.1093/bioinformatics/btt467. Epub 2013 Oct 4.
4
Uniform, optimal signal processing of mapped deep-sequencing data.
Nat Biotechnol. 2013 Jul;31(7):615-22. doi: 10.1038/nbt.2596. Epub 2013 Jun 16.
5
RFECS: a random-forest based algorithm for enhancer identification from chromatin state.
PLoS Comput Biol. 2013;9(3):e1002968. doi: 10.1371/journal.pcbi.1002968. Epub 2013 Mar 14.
6
Comparative annotation of functional regions in the human genome using epigenomic data.
Nucleic Acids Res. 2013 Apr;41(8):4423-32. doi: 10.1093/nar/gkt143. Epub 2013 Mar 12.
7
Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells.
Cell Stem Cell. 2013 Feb 7;12(2):224-37. doi: 10.1016/j.stem.2012.11.023. Epub 2013 Jan 11.
9
Spatiotemporal clustering of the epigenome reveals rules of dynamic gene regulation.
Genome Res. 2013 Feb;23(2):352-64. doi: 10.1101/gr.144949.112. Epub 2012 Oct 2.
10
GENCODE: the reference human genome annotation for The ENCODE Project.
Genome Res. 2012 Sep;22(9):1760-74. doi: 10.1101/gr.135350.111.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验