Suppr超能文献

当理论付诸实践:在现实世界中使用非维生素K拮抗剂口服抗凝药和传统口服抗凝药的依从性与持续性——是个问题还是个误解?

When the rubber meets the road: adherence and persistence with non-vitamin K antagonist oral anticoagulants and old oral anticoagulants in the real world-a problem or a myth ?

作者信息

Suryanarayan Deepa, Schulman Sam

机构信息

Department of Medicine and Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada.

出版信息

Semin Thromb Hemost. 2014 Nov;40(8):852-9. doi: 10.1055/s-0034-1395156. Epub 2014 Nov 10.

Abstract

For patients taking vitamin K antagonist (VKA) anticoagulants, poor adherence to the drug regimen is associated with a lower percent time in therapeutic range and also with an increased risk of thromboembolic complications. The non-vitamin K antagonist oral anticoagulants (NOACs) do not require routine laboratory monitoring and therefore the risk of nonadherence remaining undetected and without any corrective attempts must be recognized. Persistence with the NOACs and VKA was quite comparable in the phase III trials, whereas a postmarketing study demonstrated better persistence with dabigatran than with warfarin. Preliminary studies on adherence to the dabigatran regimen have shown poor adherence in 12 to 27%, and also for this drug such behavior seems associated with an unfavorable outcome. There is uncertainty about the best methods to evaluate adherence. Studies on the adherence are needed for all the NOACs, for different clinical settings and patient populations. A combination of strategies should probably be used to achieve the best possible adherence, including patient education and some form of automatic reminders.

摘要

对于服用维生素K拮抗剂(VKA)进行抗凝治疗的患者,药物治疗方案依从性差与治疗范围内的时间百分比降低以及血栓栓塞并发症风险增加相关。非维生素K拮抗剂口服抗凝药(NOACs)不需要常规实验室监测,因此必须认识到存在未被发现且未进行任何纠正措施的不依从风险。在III期试验中,使用NOACs和VKA的持续率相当,而一项上市后研究表明,达比加群的持续率优于华法林。关于达比加群治疗方案依从性的初步研究显示,依从性差的比例在12%至27%之间,而且这种行为似乎与不良结局相关。关于评估依从性的最佳方法尚无定论。需要针对所有NOACs、不同临床环境和患者群体开展依从性研究。可能需要综合运用多种策略来实现最佳依从性,包括患者教育和某种形式的自动提醒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验