Suppr超能文献

人黄素蛋白碘酪氨酸脱碘酶的单电子和双电子化学之间的转换受底物控制。

A switch between one- and two-electron chemistry of the human flavoprotein iodotyrosine deiodinase is controlled by substrate.

作者信息

Hu Jimin, Chuenchor Watchalee, Rokita Steven E

机构信息

From the Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 and.

From the Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742 and Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218

出版信息

J Biol Chem. 2015 Jan 2;290(1):590-600. doi: 10.1074/jbc.M114.605964. Epub 2014 Nov 13.

Abstract

Reductive dehalogenation is not typical of aerobic organisms but plays a significant role in iodide homeostasis and thyroid activity. The flavoprotein iodotyrosine deiodinase (IYD) is responsible for iodide salvage by reductive deiodination of the iodotyrosine derivatives formed as byproducts of thyroid hormone biosynthesis. Heterologous expression of the human enzyme lacking its N-terminal membrane anchor has allowed for physical and biochemical studies to identify the role of substrate in controlling the active site geometry and flavin chemistry. Crystal structures of human IYD and its complex with 3-iodo-l-tyrosine illustrate the ability of the substrate to provide multiple interactions with the isoalloxazine system of FMN that are usually provided by protein side chains. Ligand binding acts to template the active site geometry and significantly stabilize the one-electron-reduced semiquinone form of FMN. The neutral form of this semiquinone is observed during reductive titration of IYD in the presence of the substrate analog 3-fluoro-l-tyrosine. In the absence of an active site ligand, only the oxidized and two-electron-reduced forms of FMN are detected. The pH dependence of IYD binding and turnover also supports the importance of direct coordination between substrate and FMN for productive catalysis.

摘要

还原性脱卤作用并非需氧生物的典型特征,但在碘稳态和甲状腺活动中发挥着重要作用。黄素蛋白碘酪氨酸脱碘酶(IYD)通过对作为甲状腺激素生物合成副产物形成的碘酪氨酸衍生物进行还原性脱碘作用,负责碘的回收利用。缺乏N端膜锚定的人源酶的异源表达使得开展物理和生化研究以确定底物在控制活性位点几何结构和黄素化学性质方面的作用成为可能。人源IYD及其与3-碘-L-酪氨酸复合物的晶体结构表明,底物能够与FMN的异咯嗪系统提供多种相互作用,而这些相互作用通常由蛋白质侧链提供。配体结合作用能够塑造活性位点的几何结构,并显著稳定FMN的单电子还原半醌形式。在底物类似物3-氟-L-酪氨酸存在的情况下,对IYD进行还原性滴定过程中观察到了这种半醌的中性形式。在没有活性位点配体的情况下,仅检测到FMN的氧化形式和双电子还原形式。IYD结合和周转的pH依赖性也支持底物与FMN之间直接配位对于有效催化的重要性。

相似文献

1
A switch between one- and two-electron chemistry of the human flavoprotein iodotyrosine deiodinase is controlled by substrate.
J Biol Chem. 2015 Jan 2;290(1):590-600. doi: 10.1074/jbc.M114.605964. Epub 2014 Nov 13.
2
Crystal structure of iodotyrosine deiodinase, a novel flavoprotein responsible for iodide salvage in thyroid glands.
J Biol Chem. 2009 Jul 17;284(29):19659-67. doi: 10.1074/jbc.M109.013458. Epub 2009 May 12.
3
Redox control of iodotyrosine deiodinase.
Protein Sci. 2019 Jan;28(1):68-78. doi: 10.1002/pro.3479. Epub 2018 Oct 17.
4
Rapid kinetics of dehalogenation promoted by iodotyrosine deiodinase from human thyroid.
Biochemistry. 2015 Jul 28;54(29):4487-94. doi: 10.1021/acs.biochem.5b00410. Epub 2015 Jul 20.
5
The distribution and mechanism of iodotyrosine deiodinase defied expectations.
Arch Biochem Biophys. 2017 Oct 15;632:77-87. doi: 10.1016/j.abb.2017.07.019. Epub 2017 Jul 31.
6
Active Site Binding Is Not Sufficient for Reductive Deiodination by Iodotyrosine Deiodinase.
Biochemistry. 2017 Feb 28;56(8):1130-1139. doi: 10.1021/acs.biochem.6b01308. Epub 2017 Feb 16.
7
Functional analysis of iodotyrosine deiodinase from drosophila melanogaster.
Protein Sci. 2016 Dec;25(12):2187-2195. doi: 10.1002/pro.3044. Epub 2016 Sep 26.
8
Polar Interactions between Substrate and Flavin Control Iodotyrosine Deiodinase Function.
Biochemistry. 2024 Sep 17;63(18):2380-2389. doi: 10.1021/acs.biochem.4c00357. Epub 2024 Aug 30.

引用本文的文献

2
A Split Gene Approach to Alleviate Severe Inhibition of Catalysis by Substrate.
Biochemistry. 2025 Jul 1;64(13):2867-2876. doi: 10.1021/acs.biochem.5c00219. Epub 2025 Jun 11.
3
Polar Interactions between Substrate and Flavin Control Iodotyrosine Deiodinase Function.
Biochemistry. 2024 Sep 17;63(18):2380-2389. doi: 10.1021/acs.biochem.4c00357. Epub 2024 Aug 30.
5
Misregulation of bromotyrosine compromises fertility in male .
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2322501121. doi: 10.1073/pnas.2322501121. Epub 2024 May 15.
8
Substrate Electronics Dominate the Rate of Reductive Dehalogenation Promoted by the Flavin-Dependent Iodotyrosine Deiodinase.
Biochemistry. 2023 Apr 4;62(7):1298-1306. doi: 10.1021/acs.biochem.3c00041. Epub 2023 Mar 9.
9
1-Benzo[]pteridine-2,4-dione.
IUCrdata. 2023 Jan 6;8(Pt 1):x221223. doi: 10.1107/S2414314622012238. eCollection 2023 Jan.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
Iodotyrosine deiodinase: a unique flavoprotein present in organisms of diverse phyla.
Mol Biosyst. 2014 Jan;10(1):86-92. doi: 10.1039/c3mb70398c.
4
Electrochemical characterization of Escherichia coli adaptive response protein AidB.
Int J Mol Sci. 2012 Dec 11;13(12):16899-915. doi: 10.3390/ijms131216899.
7
Oxygen reactivity in flavoenzymes: context matters.
J Am Chem Soc. 2011 Oct 26;133(42):16809-11. doi: 10.1021/ja2081873. Epub 2011 Oct 4.
8
9
Efficient use and recycling of the micronutrient iodide in mammals.
Biochimie. 2010 Sep;92(9):1227-35. doi: 10.1016/j.biochi.2010.02.013. Epub 2010 Feb 16.
10
PHENIX: a comprehensive Python-based system for macromolecular structure solution.
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21. doi: 10.1107/S0907444909052925. Epub 2010 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验