Suppr超能文献

昆虫细胞外冰相转变

Extracellular ice phase transitions in insects.

作者信息

Hawes T C

机构信息

Asian University, Banglamung, Chonburi 20260, Thailand.

出版信息

Cryo Letters. 2014 Sep-Oct;35(5):395-9.

Abstract

At temperatures below their temperature of crystallization (Tc), the extracellular body fluids of insects undergo a phase transition from liquid to solid. Insects that survive the transition to equilibrium (complete freezing of the body fluids) are designated as freeze tolerant. Although this phenomenon has been reported and described in many Insecta, current nomenclature and theory does not clearly delineate between the process of transition (freezing) and the final solid phase itself (the frozen state). Thus freeze tolerant insects are currently, by convention, described in terms of the temperature at which the crystallization of their body fluids is initiated, Tc. In fact, the correct descriptor for insects that tolerate freezing is the temperature of equilibrium freezing, Tef. The process of freezing is itself a separate physical event with unique physiological stresses that are associated with ice growth. Correspondingly there are a number of insects whose physiological cryo-limits are very specifically delineated by this transitional envelope. The distinction also has considerable significance for our understanding of insect cryobiology: firstly, because the ability to manage endogenous ice growth is a fundamental segregator of cryotype; and secondly, because our understanding of internal ice management is still largely nascent.

摘要

在低于其结晶温度(Tc)的温度下,昆虫的细胞外体液会经历从液体到固体的相变。在向平衡状态转变(体液完全冻结)中存活下来的昆虫被称为耐冻昆虫。尽管这种现象在许多昆虫纲中都有报道和描述,但目前的命名法和理论并没有明确区分转变过程(冻结)和最终的固相本身(冻结状态)。因此,按照惯例,目前耐冻昆虫是根据其体液开始结晶的温度Tc来描述的。事实上,耐冻昆虫的正确描述指标是平衡冻结温度Tef。冻结过程本身是一个独立的物理事件,伴随着与冰生长相关的独特生理压力。相应地,有许多昆虫的生理低温极限是由这个转变范围非常明确地界定的。这种区分对于我们理解昆虫低温生物学也具有相当重要的意义:首先,因为控制内源性冰生长的能力是低温类型的一个基本区分因素;其次,因为我们对内部冰管理的理解在很大程度上仍处于起步阶段。

相似文献

1
Extracellular ice phase transitions in insects.
Cryo Letters. 2014 Sep-Oct;35(5):395-9.
2
Mechanisms underlying insect freeze tolerance.
Biol Rev Camb Philos Soc. 2018 Nov;93(4):1891-1914. doi: 10.1111/brv.12425. Epub 2018 May 10.
3
Ice nucleation and antinucleation in nature.
Cryobiology. 2000 Dec;41(4):257-79. doi: 10.1006/cryo.2000.2289.
4
Ice nucleation in solutions and freeze-avoiding insects-homogeneous or heterogeneous?
Cryobiology. 2004 Jun;48(3):309-21. doi: 10.1016/j.cryobiol.2004.02.005.
5
Freeze tolerance in an arctic Alaska stonefly.
J Exp Biol. 2009 Jan;212(Pt 2):305-12. doi: 10.1242/jeb.020701.
6
Supercooling and freezing as eco-physiological alternatives rather than mutually exclusive strategies: A case study in Pyrrhocoris apterus.
J Insect Physiol. 2018 Nov-Dec;111:53-62. doi: 10.1016/j.jinsphys.2018.10.006. Epub 2018 Oct 25.
7
Inorganic ions in cold-hardiness.
Cryobiology. 2004 Apr;48(2):126-33. doi: 10.1016/j.cryobiol.2004.01.004.
8
Freezing induces a loss of freeze tolerance in an overwintering insect.
Proc Biol Sci. 2004 Jul 22;271(1547):1507-11. doi: 10.1098/rspb.2004.2760.
9
Climatic variability and the evolution of insect freeze tolerance.
Biol Rev Camb Philos Soc. 2003 May;78(2):181-95. doi: 10.1017/s1464793102006024.
10
Biological ice nucleation and ice distribution in cold-hardy ectothermic animals.
Annu Rev Physiol. 1998;60:55-72. doi: 10.1146/annurev.physiol.60.1.55.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验