Suppr超能文献

使概率关系类别可学习。

Making Probabilistic Relational Categories Learnable.

作者信息

Jung Wookyoung, Hummel John E

机构信息

Department of Psychology, University of Illinois.

出版信息

Cogn Sci. 2015 Aug;39(6):1259-91. doi: 10.1111/cogs.12199. Epub 2014 Nov 17.

Abstract

Theories of relational concept acquisition (e.g., schema induction) based on structured intersection discovery predict that relational concepts with a probabilistic (i.e., family resemblance) structure ought to be extremely difficult to learn. We report four experiments testing this prediction by investigating conditions hypothesized to facilitate the learning of such categories. Experiment 1 showed that changing the task from a category-learning task to choosing the "winning" object in each stimulus greatly facilitated participants' ability to learn probabilistic relational categories. Experiments 2 and 3 further investigated the mechanisms underlying this "who's winning" effect. Experiment 4 replicated and generalized the "who's winning" effect with more natural stimuli. Together, our findings suggest that people learn relational concepts by a process of intersection discovery akin to schema induction, and that any task that encourages people to discover a higher order relation that remains invariant over members of a category will facilitate the learning of putatively probabilistic relational concepts.

摘要

基于结构化交集发现的关系概念习得理论(例如,图式归纳)预测,具有概率性(即家族相似性)结构的关系概念应该极难学习。我们报告了四项实验,通过研究假设为有助于学习此类类别的条件来检验这一预测。实验1表明,将任务从类别学习任务改为在每个刺激中选择“获胜”对象,极大地促进了参与者学习概率性关系类别的能力。实验2和实验3进一步研究了这种“谁会获胜”效应背后的机制。实验4用更自然的刺激重复并推广了“谁会获胜”效应。总之,我们的研究结果表明,人们通过类似于图式归纳的交集发现过程来学习关系概念,并且任何鼓励人们发现一种在类别成员中保持不变的高阶关系的任务,都将促进对假定的概率性关系概念的学习。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验