Irvine Gordon W, Duncan Kelly E R, Gullons Meredith, Stillman Martin J
Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7 (Canada) www.stillmangroup.ca.
Chemistry. 2015 Jan 12;21(3):1269-79. doi: 10.1002/chem.201404283. Epub 2014 Nov 17.
Mammalian metallothioneins are cysteine rich metal-binding proteins comprising, when fully metalated, two metal-binding domains: the α-domain binds with M4(II)S(Cys)11 stoichiometry and the β domain binds as M3(II)S(Cys)9 stoichiometry. While the fully metalated species have been widely studied, the metalation of the apoprotein is poorly understood. Key to a description of the metalation pathway(s) is the initial conformation of the apoprotein and the arrangement of the metal-coordinating cysteines prior to metalation. We report the effect of the ill-defined, globular structure of apoMT on metalation rates. In order to overcome the experimental limitations inherent in structural determinations of a fluxional protein we used a detailed analysis of the apo-α-metallothionein conformation based on the differential rate of cysteine modification with benzoquinone. The ESI mass spectral data show the presence of two distinct conformational families: one a folded conformational family at neutral pH and a second an unfolded family of conformations at low pH. The Cd(II) metalation properties of these two conformationally distinct families were studied using stopped-flow kinetics. Surprisingly, the unfolded apoprotein metalated significantly slower than the folded apoprotein, a result interpreted as being due to the longer time required to fold into the cluster structure when the fourth Cd(II) binds. These results provide the first evidence for the role of the structure of the apo-αMT in the metalation reaction pathways and show that cysteine modification coupled with ESI-MS can be used to probe structure in cysteine-rich proteins.
哺乳动物金属硫蛋白是富含半胱氨酸的金属结合蛋白,完全金属化时包含两个金属结合结构域:α结构域以M4(II)S(Cys)11化学计量比结合,β结构域以M3(II)S(Cys)9化学计量比结合。虽然完全金属化的物种已得到广泛研究,但脱辅基蛋白的金属化却了解甚少。描述金属化途径的关键在于脱辅基蛋白的初始构象以及金属化之前金属配位半胱氨酸的排列。我们报告了脱辅基金属硫蛋白(apoMT)不明确的球状结构对金属化速率的影响。为了克服对动态变化蛋白质进行结构测定时固有的实验局限性,我们基于对苯醌修饰半胱氨酸的差异速率,对脱辅基α-金属硫蛋白的构象进行了详细分析。电喷雾电离质谱(ESI)数据显示存在两个不同的构象家族:一个是中性pH下的折叠构象家族,另一个是低pH下的未折叠构象家族。使用停流动力学研究了这两个构象不同家族的Cd(II)金属化特性。令人惊讶的是,未折叠的脱辅基蛋白金属化速度明显慢于折叠的脱辅基蛋白,这一结果被解释为是由于第四个Cd(II)结合时折叠成簇结构所需的时间更长所致。这些结果首次证明了脱辅基α-金属硫蛋白(apo-αMT)的结构在金属化反应途径中的作用,并表明半胱氨酸修饰与ESI-MS联用可用于探测富含半胱氨酸蛋白质的结构。