Suppr超能文献

模拟年龄依赖性辐射诱发的二次癌症风险及突变率估计:一种进化方法。

Modeling age-dependent radiation-induced second cancer risks and estimation of mutation rate: an evolutionary approach.

作者信息

Kaveh Kamran, Manem Venkata S K, Kohandel Mohammad, Sivaloganathan Siv

机构信息

Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.

Center for Mathematical Medicine, Fields Institute for Research in Mathematical Sciences, Toronto, ON, M5T 3J1, Canada.

出版信息

Radiat Environ Biophys. 2015 Mar;54(1):25-36. doi: 10.1007/s00411-014-0576-z. Epub 2014 Nov 18.

Abstract

Although the survival rate of cancer patients has significantly increased due to advances in anti-cancer therapeutics, one of the major side effects of these therapies, particularly radiotherapy, is the potential manifestation of radiation-induced secondary malignancies. In this work, a novel evolutionary stochastic model is introduced that couples short-term formalism (during radiotherapy) and long-term formalism (post-treatment). This framework is used to estimate the risks of second cancer as a function of spontaneous background and radiation-induced mutation rates of normal and pre-malignant cells. By fitting the model to available clinical data for spontaneous background risk together with data of Hodgkin's lymphoma survivors (for various organs), the second cancer mutation rate is estimated. The model predicts a significant increase in mutation rate for some cancer types, which may be a sign of genomic instability. Finally, it is shown that the model results are in agreement with the measured results for excess relative risk (ERR) as a function of exposure age and that the model predicts a negative correlation of ERR with increase in attained age. This novel approach can be used to analyze several radiotherapy protocols in current clinical practice and to forecast the second cancer risks over time for individual patients.

摘要

尽管由于抗癌治疗方法的进步,癌症患者的生存率显著提高,但这些疗法的主要副作用之一,尤其是放射治疗,是辐射诱发继发性恶性肿瘤的潜在表现。在这项工作中,引入了一种新颖的进化随机模型,该模型将短期形式主义(放疗期间)和长期形式主义(治疗后)相结合。这个框架用于估计作为正常细胞和癌前细胞自发背景及辐射诱发突变率函数的二次癌症风险。通过将该模型与自发背景风险的现有临床数据以及霍奇金淋巴瘤幸存者(针对各种器官)的数据进行拟合,估计了二次癌症突变率。该模型预测某些癌症类型的突变率会显著增加,这可能是基因组不稳定的一个迹象。最后,结果表明该模型结果与作为暴露年龄函数的超额相对风险(ERR)的测量结果一致,并且该模型预测ERR与达到年龄的增加呈负相关。这种新颖的方法可用于分析当前临床实践中的几种放疗方案,并预测个体患者随时间的二次癌症风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验