Suppr超能文献

一种针对有序备择问题的新型强大非参数秩检验。

A new powerful nonparametric rank test for ordered alternative problem.

作者信息

Shan Guogen, Young Daniel, Kang Le

机构信息

Epidemiology and Biostatistics Program, Department of Environmental and Occupational Health, School of Community Health Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America.

Division of Health Sciences, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America.

出版信息

PLoS One. 2014 Nov 18;9(11):e112924. doi: 10.1371/journal.pone.0112924. eCollection 2014.

Abstract

We propose a new nonparametric test for ordered alternative problem based on the rank difference between two observations from different groups. These groups are assumed to be independent from each other. The exact mean and variance of the test statistic under the null distribution are derived, and its asymptotic distribution is proven to be normal. Furthermore, an extensive power comparison between the new test and other commonly used tests shows that the new test is generally more powerful than others under various conditions, including the same type of distribution, and mixed distributions. A real example from an anti-hypertensive drug trial is provided to illustrate the application of the tests. The new test is therefore recommended for use in practice due to easy calculation and substantial power gain.

摘要

我们基于来自不同组的两个观测值之间的秩差,针对有序备择假设问题提出了一种新的非参数检验方法。假设这些组相互独立。推导了原假设分布下检验统计量的精确均值和方差,并证明其渐近分布为正态分布。此外,新检验与其他常用检验之间的广泛功效比较表明,在各种条件下,包括相同类型的分布和混合分布,新检验通常比其他检验更具功效。提供了一个抗高血压药物试验的实际例子来说明这些检验的应用。因此,由于计算简便且功效显著提高,建议在实际中使用新检验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e13b/4236087/4f7b85bafab5/pone.0112924.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验