Suppr超能文献

利用支持向量机预测人工湿地水质指数

Prediction of water quality index in constructed wetlands using support vector machine.

作者信息

Mohammadpour Reza, Shaharuddin Syafiq, Chang Chun Kiat, Zakaria Nor Azazi, Ab Ghani Aminuddin, Chan Ngai Weng

机构信息

River Engineering and Urban Drainage Research Centre (REDAC), Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300, Nibong Tebal, Penang, Malaysia,

出版信息

Environ Sci Pollut Res Int. 2015 Apr;22(8):6208-19. doi: 10.1007/s11356-014-3806-7. Epub 2014 Nov 19.

Abstract

Poor water quality is a serious problem in the world which threatens human health, ecosystems, and plant/animal life. Prediction of surface water quality is a main concern in water resource and environmental systems. In this research, the support vector machine and two methods of artificial neural networks (ANNs), namely feed forward back propagation (FFBP) and radial basis function (RBF), were used to predict the water quality index (WQI) in a free constructed wetland. Seventeen points of the wetland were monitored twice a month over a period of 14 months, and an extensive dataset was collected for 11 water quality variables. A detailed comparison of the overall performance showed that prediction of the support vector machine (SVM) model with coefficient of correlation (R(2)) = 0.9984 and mean absolute error (MAE) = 0.0052 was either better or comparable with neural networks. This research highlights that the SVM and FFBP can be successfully employed for the prediction of water quality in a free surface constructed wetland environment. These methods simplify the calculation of the WQI and reduce substantial efforts and time by optimizing the computations.

摘要

水质不佳是全球面临的一个严重问题,它威胁着人类健康、生态系统以及动植物的生存。地表水水质预测是水资源和环境系统中的一个主要关注点。在本研究中,支持向量机以及人工神经网络(ANN)的两种方法,即前馈反向传播(FFBP)和径向基函数(RBF),被用于预测自由构建湿地中的水质指数(WQI)。在14个月的时间里,每月对湿地的17个点位进行两次监测,并收集了关于11个水质变量的大量数据集。对整体性能的详细比较表明,相关系数(R(2))=0.9984且平均绝对误差(MAE)=0.0052的支持向量机(SVM)模型的预测效果与神经网络相当或更优。本研究强调,支持向量机和前馈反向传播可以成功应用于自由表面构建湿地环境中的水质预测。这些方法简化了水质指数的计算,并通过优化计算减少了大量的工作量和时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验