Brightwell Sara, Kaji Keisuke
MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
Methods Mol Biol. 2016;1357:285-93. doi: 10.1007/7651_2014_147.
Generation of iPSCs is inefficient and the molecular mechanisms underlying reprogramming are not well understood. While several studies have demonstrated that reprogramming is not entirely a random process and contains predictable stepwise changes, varying degrees of cellular heterogeneity that arise in different reprogramming systems can obscure the process. Among several reprogramming systems available, delivery of polycistronic reprogramming factor expression cassettes with piggyBac transposon into mouse embryonic fibroblasts (MEFs) is one of the simplest and most robust reprogramming approaches that provide a low background of partially reprogrammed cells. Using two novel cell surface markers, ICAM1 and CD44, clear cell population changes undergoing reprogramming can be observed over a time course upon induction of the reprogramming factors. Consequently, this technique allows for easy identification of factors that enhance or delay reprogramming, and can be a useful strategy in elucidating key mechanisms for efficient generation of iPSCs.
诱导多能干细胞(iPSC)的产生效率低下,且重编程背后的分子机制尚未完全了解。虽然多项研究表明重编程并非完全是一个随机过程,而是包含可预测的逐步变化,但不同重编程系统中出现的不同程度的细胞异质性会使这一过程变得模糊不清。在现有的几种重编程系统中,利用猪尾巴病毒转座子将多顺反子重编程因子表达盒导入小鼠胚胎成纤维细胞(MEF)是最简单且最有效的重编程方法之一,该方法产生的部分重编程细胞背景较低。使用两种新型细胞表面标志物ICAM1和CD44,在诱导重编程因子后,可以在一段时间内观察到重编程过程中明显的细胞群体变化。因此,该技术能够轻松识别增强或延迟重编程的因子,并且可能是阐明高效产生iPSC关键机制的有用策略。