Barlowe C K, Williams M E, Rabinowitz J C, Appling D R
Clayton Foundation Biochemical Institute, Department of Chemistry, University of Texas, Austin 78712.
Biochemistry. 1989 Mar 7;28(5):2099-106. doi: 10.1021/bi00431a020.
C1-tetrahydrofolate (THF) synthase is a trifunctional protein possessing the activities 10-formyl-THF synthetase, 5,10-methenyl-THF cyclohydrolase, and 5,10-methylene-THF dehydrogenase. The current model divides this protein into two functionally independent domains with dehydrogenase/cyclohydrolase activities sharing an overlapping active site on the N-terminal domain and synthetase activity associated with the C-terminal domain. Previous chemical modification studies on C1-THF synthase from the yeast Saccharomyces cerevisiae indicated at least two cysteinyl residues involved in the dehydrogenase/cyclohydrolase reactions [Appling, D. R., & Rabinowitz, J. C. (1985) Biochemistry 24, 3540-3547]. In the present work, site-directed mutagenesis of the S. cerevisiae ADE3 gene, which encodes C1-THF synthase, was used to individually change each cysteine contained within the dehydrogenase/cyclohydrolase domain (Cys-11, Cys-144, and Cys-257) to serine. The resulting proteins were overexpressed in yeast and purified for kinetic analysis. Site-specific mutations in the dehydrogenase/cyclohydrolase domain did not affect synthetase activity, consistent with the proposed domain structure. The C144S and C257S mutations result in 7- and 2-fold increases, respectively, in the dehydrogenase Km for NADP+. C144S lowers the dehydrogenase maximal velocity roughly 50% while C257S has a maximal velocity similar to that of the wild type. Cyclohydrolase catalytic activity is reduced 20-fold by the C144S mutation but increased 2-fold by the C257S mutation. Conversion of Cys-11 to serine has a negligible effect on dehydrogenase/cyclohydrolase activity. A double mutant, C144S/C257S, results in catalytic properties roughly multiplicative of the individual mutations.(ABSTRACT TRUNCATED AT 250 WORDS)
C1-四氢叶酸(THF)合酶是一种具有三功能的蛋白质,具备10-甲酰基-THF合成酶、5,10-亚甲基-THF环水解酶和5,10-亚甲基-THF脱氢酶的活性。目前的模型将该蛋白质分为两个功能独立的结构域,脱氢酶/环水解酶活性在N端结构域共享一个重叠的活性位点,合成酶活性与C端结构域相关。先前对酿酒酵母C1-THF合酶的化学修饰研究表明,至少有两个半胱氨酸残基参与脱氢酶/环水解酶反应[阿普林,D.R.,&拉宾诺维茨,J.C.(1985年)《生物化学》24,3540 - 3547]。在本研究中,利用编码C1-THF合酶的酿酒酵母ADE3基因的定点诱变,将脱氢酶/环水解酶结构域内的每个半胱氨酸(Cys-11、Cys-144和Cys-257)分别替换为丝氨酸。所得蛋白质在酵母中过表达并纯化用于动力学分析。脱氢酶/环水解酶结构域中的位点特异性突变不影响合成酶活性,这与所提出的结构域结构一致。C144S和C257S突变分别导致NADP +的脱氢酶Km增加7倍和2倍。C144S使脱氢酶最大速度降低约50%,而C257S的最大速度与野生型相似。C144S突变使环水解酶催化活性降低20倍,但C257S突变使其增加2倍。将Cys-11转换为丝氨酸对脱氢酶/环水解酶活性的影响可忽略不计。双突变体C144S/C257S的催化特性大致是各个突变的乘积。(摘要截短于250字)