Michener Joshua K, Camargo Neves Aline A, Vuilleumier Stéphane, Bringel Françoise, Marx Christopher J
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States.
CNRS Molecular Genetics, Genomics, Microbiology, Université de Strasbourg, Strasbourg, France.
Elife. 2014 Nov 24;3:e04279. doi: 10.7554/eLife.04279.
When microbes acquire new abilities through horizontal gene transfer, the genes and pathways must function under conditions with which they did not coevolve. If newly-acquired genes burden the host, their utility will depend on further evolutionary refinement of the recombinant strain. We used laboratory evolution to recapitulate this process of transfer and refinement, demonstrating that effective use of an introduced dichloromethane degradation pathway required one of several mutations to the bacterial host that are predicted to increase chloride efflux. We then used this knowledge to identify parallel, beneficial mutations that independently evolved in two natural dichloromethane-degrading strains. Finally, we constructed a synthetic mobile genetic element carrying both the degradation pathway and a chloride exporter, which preempted the adaptive process and directly enabled effective dichloromethane degradation across diverse Methylobacterium environmental isolates. Our results demonstrate the importance of post-transfer refinement in horizontal gene transfer, with potential applications in bioremediation and synthetic biology.
当微生物通过水平基因转移获得新能力时,基因和途径必须在与其未共同进化的条件下发挥作用。如果新获得的基因对宿主造成负担,其效用将取决于重组菌株的进一步进化优化。我们利用实验室进化来重现这种转移和优化过程,证明有效利用引入的二氯甲烷降解途径需要对细菌宿主进行几种突变之一,这些突变预计会增加氯离子外流。然后,我们利用这些知识来识别在两种天然二氯甲烷降解菌株中独立进化的平行有益突变。最后,我们构建了一个携带降解途径和氯离子输出蛋白的合成移动遗传元件,它绕过了适应性过程,并直接使不同的甲基杆菌环境分离株能够有效降解二氯甲烷。我们的结果证明了水平基因转移中转移后优化的重要性,在生物修复和合成生物学中有潜在应用。