Suppr超能文献

可植入药物递送系统中的生物医学成像

Biomedical Imaging in Implantable Drug Delivery Systems.

作者信息

Zhou Haoyan, Hernandez Christopher, Goss Monika, Gawlik Anna, Exner Agata A

机构信息

Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106-5056, USA.

出版信息

Curr Drug Targets. 2015;16(6):672-82. doi: 10.2174/1389450115666141122211920.

Abstract

Implantable drug delivery systems (DDS) provide a platform for sustained release of therapeutic agents over a period of weeks to months and sometimes years. Such strategies are typically used clinically to increase patient compliance by replacing frequent administration of drugs such as contraceptives and hormones to maintain plasma concentration within the therapeutic window. Implantable or injectable systems have also been investigated as a means of local drug administration which favors high drug concentration at a site of interest, such as a tumor, while reducing systemic drug exposure to minimize unwanted side effects. Significant advances in the field of local DDS have led to increasingly sophisticated technology with new challenges including quantification of local and systemic pharmacokinetics and implant- body interactions. Because many of these sought-after parameters are highly dependent on the tissue properties at the implantation site, and rarely represented adequately with in vitro models, new nondestructive techniques that can be used to study implants in situ are highly desirable. Versatile imaging tools can meet this need and provide quantitative data on morphological and functional aspects of implantable systems. The focus of this review article is an overview of current biomedical imaging techniques, including magnetic resonance imaging (MRI), ultrasound imaging, optical imaging, X-ray and computed tomography (CT), and their application in evaluation of implantable DDS.

摘要

可植入式药物递送系统(DDS)为治疗药物在数周、数月甚至数年的时间内持续释放提供了一个平台。临床上通常采用此类策略,通过替代频繁给药(如避孕药和激素)来提高患者的依从性,从而将血浆浓度维持在治疗窗内。可植入式或注射式系统也已作为局部给药的一种方式进行了研究,这种方式有利于在感兴趣的部位(如肿瘤)实现高药物浓度,同时减少全身药物暴露,以将不良副作用降至最低。局部药物递送系统领域的重大进展催生了日益复杂的技术,同时也带来了新的挑战,包括局部和全身药代动力学的量化以及植入物与机体的相互作用。由于许多这些备受关注的参数高度依赖于植入部位的组织特性,且体外模型很少能充分体现这些特性,因此非常需要能够原位研究植入物的新型无损技术。多功能成像工具能够满足这一需求,并提供有关可植入系统形态和功能方面的定量数据。本文综述的重点是当前生物医学成像技术的概述,包括磁共振成像(MRI)、超声成像、光学成像、X射线和计算机断层扫描(CT),以及它们在评估可植入式药物递送系统中的应用。

相似文献

1
Biomedical Imaging in Implantable Drug Delivery Systems.
Curr Drug Targets. 2015;16(6):672-82. doi: 10.2174/1389450115666141122211920.
2
In vitro and in vivo demonstration of risperidone implants in mice.
Schizophr Res. 2008 Jan;98(1-3):66-78. doi: 10.1016/j.schres.2007.08.003. Epub 2007 Aug 31.
3
Evolution of drug-eluting biomedical implants for sustained drug delivery.
Eur J Pharm Biopharm. 2021 Feb;159:21-35. doi: 10.1016/j.ejpb.2020.12.005. Epub 2020 Dec 16.
4
X-ray computed tomography methods for in vivo evaluation of local drug release systems.
IEEE Trans Med Imaging. 2002 Oct;21(10):1310-6. doi: 10.1109/TMI.2002.806270.
5
Therapeutic applications of implantable drug delivery systems.
J Pharmacol Toxicol Methods. 1998 Jul;40(1):1-12. doi: 10.1016/s1056-8719(98)00027-6.
6
Solvent induced phase inversion-based in situ forming controlled release drug delivery implants.
J Control Release. 2014 Feb 28;176:8-23. doi: 10.1016/j.jconrel.2013.12.020. Epub 2013 Dec 27.
7
Towards soft robotic devices for site-specific drug delivery.
Expert Rev Med Devices. 2015;12(6):703-15. doi: 10.1586/17434440.2015.1091722. Epub 2015 Sep 28.
8
9
Polysaccharide-based nanoparticles: a versatile platform for drug delivery and biomedical imaging.
Curr Med Chem. 2012;19(19):3212-29. doi: 10.2174/092986712800784658.
10
Injectable implants for the sustained release of protein and peptide drugs.
Drug Discov Today. 2013 Apr;18(7-8):337-49. doi: 10.1016/j.drudis.2013.01.013. Epub 2013 Feb 11.

引用本文的文献

1
Optical coherence tomography for noninvasive monitoring of drug delivery.
Adv Drug Deliv Rev. 2025 May;220:115571. doi: 10.1016/j.addr.2025.115571. Epub 2025 Mar 24.
3
Bone scaffolds-based localized drugs delivery for osteosarcoma: current status and future perspective.
Drug Deliv. 2024 Dec;31(1):2391001. doi: 10.1080/10717544.2024.2391001. Epub 2024 Sep 6.
4
Toward Fully Automated Personalized Orthopedic Treatments: Innovations and Interdisciplinary Gaps.
Bioengineering (Basel). 2024 Aug 12;11(8):817. doi: 10.3390/bioengineering11080817.
6
Targeted Delivery of Chemotherapeutic Agents for Osteosarcoma Treatment.
Front Oncol. 2022 Mar 4;12:843345. doi: 10.3389/fonc.2022.843345. eCollection 2022.
8
Development of a Biodegradable Subcutaneous Implant for Prolonged Drug Delivery Using 3D Printing.
Pharmaceutics. 2020 Jan 28;12(2):105. doi: 10.3390/pharmaceutics12020105.
9
Noninvasive characterization of in situ forming implant diffusivity using diffusion-weighted MRI.
J Control Release. 2019 Sep 10;309:289-301. doi: 10.1016/j.jconrel.2019.07.019. Epub 2019 Jul 16.

本文引用的文献

1
Characterization of porous, dexamethasone-releasing polyurethane coatings for glucose sensors.
Acta Biomater. 2014 Nov;10(11):4629-4638. doi: 10.1016/j.actbio.2014.07.019. Epub 2014 Jul 25.
2
Modulating hydrogel crosslink density and degradation to control bone morphogenetic protein delivery and in vivo bone formation.
J Control Release. 2014 Oct 10;191:63-70. doi: 10.1016/j.jconrel.2014.05.053. Epub 2014 Jun 4.
3
An overview of clinical and commercial impact of drug delivery systems.
J Control Release. 2014 Sep 28;190:15-28. doi: 10.1016/j.jconrel.2014.03.053. Epub 2014 Apr 18.
4
Evolution of implantable and insertable drug delivery systems.
J Control Release. 2014 May 10;181:1-10. doi: 10.1016/j.jconrel.2014.02.006. Epub 2014 Feb 15.
5
Non-invasive in vivo characterization of microclimate pH inside in situ forming PLGA implants using multispectral fluorescence imaging.
J Control Release. 2014 Apr 10;179:52-62. doi: 10.1016/j.jconrel.2014.01.024. Epub 2014 Feb 3.
6
Distribution of molecules locally delivered from bone cement.
J Biomed Mater Res B Appl Biomater. 2014 May;102(4):806-14. doi: 10.1002/jbm.b.33062. Epub 2013 Oct 24.
7
Bone regeneration around N-acetyl cysteine-loaded nanotube titanium dental implant in rat mandible.
Biomaterials. 2013 Dec;34(38):10199-208. doi: 10.1016/j.biomaterials.2013.08.080. Epub 2013 Sep 18.
8
In vitro, in vivo, and in silico evaluation of the bioresponsive behavior of an intelligent intraocular implant.
Pharm Res. 2014 Mar;31(3):607-34. doi: 10.1007/s11095-013-1184-3. Epub 2013 Sep 4.
9
Locally delivered salicylic acid from a poly(anhydride-ester): impact on diabetic bone regeneration.
J Control Release. 2013 Oct 10;171(1):33-7. doi: 10.1016/j.jconrel.2013.06.024. Epub 2013 Jul 1.
10
Imaging challenges in biomaterials and tissue engineering.
Biomaterials. 2013 Sep;34(28):6615-30. doi: 10.1016/j.biomaterials.2013.05.033. Epub 2013 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验