Geiser Christian, Koch Tobias, Eid Michael
Department of Psychology, Utah State University.
Department of Education and Psychology, Freie Universität Berlin, Germany.
Struct Equ Modeling. 2014;21(4):509-523. doi: 10.1080/10705511.2014.919816.
In a recent article, Castro-Schilo, Widaman, and Grimm (2013) compared different approaches for relating multitrait-multimethod (MTMM) data to external variables. Castro-Schilo et al. reported that estimated associations with external variables were in part biased when either the Correlated Traits-Correlated Uniqueness (CT-CU) or Correlated Traits-Correlated (Methods - 1) [CT-C(M - 1)] models were fit to data generated from the Correlated Traits-Correlated Methods (CT-CM) model, whereas the data-generating CT-CM model accurately reproduced these associations. Castro-Schilo et al. argued that the CT-CM model adequately represents the data-generating mechanism in MTMM studies, whereas the CT-CU and CT-C(M - 1) models do not fully represent the MTMM structure. In this comment, we question whether the CT-CM model is more plausible as a data-generating model for MTMM data than the CT-C(M - 1) model. We show that the CT-C(M - 1) model can be formulated as a reparameterization of a basic MTMM true score model that leads to a meaningful and parsimonious representation of MTMM data. We advocate the use CFA-MTMM models in which latent trait, method, and error variables are explicitly and constructively defined based on psychometric theory.
在最近的一篇文章中,卡斯特罗 - 希洛、维达曼和格林(2013年)比较了将多特质 - 多方法(MTMM)数据与外部变量相关联的不同方法。卡斯特罗 - 希洛等人报告称,当将相关特质 - 相关独特性(CT - CU)模型或相关特质 - 相关(方法 - 1)[CT - C(M - 1)]模型应用于从相关特质 - 相关方法(CT - CM)模型生成的数据时,与外部变量的估计关联部分存在偏差,而数据生成的CT - CM模型准确地再现了这些关联。卡斯特罗 - 希洛等人认为,CT - CM模型充分代表了MTMM研究中的数据生成机制,而CT - CU和CT - C(M - 1)模型并未完全代表MTMM结构。在本评论中,我们质疑CT - CM模型作为MTMM数据生成模型是否比CT - C(M - 1)模型更合理。我们表明,CT - C(M - 1)模型可以被表述为一个基本MTMM真分数模型的重新参数化,这会产生一个对MTMM数据有意义且简洁的表示。我们提倡使用验证性因素分析 - MTMM模型,其中潜在特质、方法和误差变量是基于心理测量理论明确且有建设性地定义的。