Suppr超能文献

多特质-多方法分析中的数据生成机制与建设性定义的潜在变量:对卡斯特罗-希洛、维达曼和格林姆(2013年)的评论

Data-Generating Mechanisms Versus Constructively-Defined Latent Variables in Multitrait-Multimethod Analysis: A Comment on Castro-Schilo, Widaman, and Grimm (2013).

作者信息

Geiser Christian, Koch Tobias, Eid Michael

机构信息

Department of Psychology, Utah State University.

Department of Education and Psychology, Freie Universität Berlin, Germany.

出版信息

Struct Equ Modeling. 2014;21(4):509-523. doi: 10.1080/10705511.2014.919816.

Abstract

In a recent article, Castro-Schilo, Widaman, and Grimm (2013) compared different approaches for relating multitrait-multimethod (MTMM) data to external variables. Castro-Schilo et al. reported that estimated associations with external variables were in part biased when either the Correlated Traits-Correlated Uniqueness (CT-CU) or Correlated Traits-Correlated (Methods - 1) [CT-C(M - 1)] models were fit to data generated from the Correlated Traits-Correlated Methods (CT-CM) model, whereas the data-generating CT-CM model accurately reproduced these associations. Castro-Schilo et al. argued that the CT-CM model adequately represents the data-generating mechanism in MTMM studies, whereas the CT-CU and CT-C(M - 1) models do not fully represent the MTMM structure. In this comment, we question whether the CT-CM model is more plausible as a data-generating model for MTMM data than the CT-C(M - 1) model. We show that the CT-C(M - 1) model can be formulated as a reparameterization of a basic MTMM true score model that leads to a meaningful and parsimonious representation of MTMM data. We advocate the use CFA-MTMM models in which latent trait, method, and error variables are explicitly and constructively defined based on psychometric theory.

摘要

在最近的一篇文章中,卡斯特罗 - 希洛、维达曼和格林(2013年)比较了将多特质 - 多方法(MTMM)数据与外部变量相关联的不同方法。卡斯特罗 - 希洛等人报告称,当将相关特质 - 相关独特性(CT - CU)模型或相关特质 - 相关(方法 - 1)[CT - C(M - 1)]模型应用于从相关特质 - 相关方法(CT - CM)模型生成的数据时,与外部变量的估计关联部分存在偏差,而数据生成的CT - CM模型准确地再现了这些关联。卡斯特罗 - 希洛等人认为,CT - CM模型充分代表了MTMM研究中的数据生成机制,而CT - CU和CT - C(M - 1)模型并未完全代表MTMM结构。在本评论中,我们质疑CT - CM模型作为MTMM数据生成模型是否比CT - C(M - 1)模型更合理。我们表明,CT - C(M - 1)模型可以被表述为一个基本MTMM真分数模型的重新参数化,这会产生一个对MTMM数据有意义且简洁的表示。我们提倡使用验证性因素分析 - MTMM模型,其中潜在特质、方法和误差变量是基于心理测量理论明确且有建设性地定义的。

相似文献

2
Examining Quadratic Relationships Between Traits and Methods in Two Multitrait-Multimethod Models.
Front Psychol. 2019 Mar 14;10:353. doi: 10.3389/fpsyg.2019.00353. eCollection 2019.
5
Convergence, Admissibility, and Fit of Alternative Confirmatory Factor Analysis Models for MTMM Data.
Educ Psychol Meas. 2016 Jun;76(3):487-507. doi: 10.1177/0013164415601884. Epub 2015 Aug 19.
6
Longitudinal Multitrait-Multimethod Models for Developmental Research.
Multivariate Behav Res. 2009 Mar-Apr;44(2):233-58. doi: 10.1080/00273170902794230.
7
Do method effects generalize across traits (and what if they don't)?
J Pers. 2021 May;89(3):382-401. doi: 10.1111/jopy.12625. Epub 2021 Mar 5.
9
Overcoming Problems in Confirmatory Factor Analyses of MTMM Data: The Correlated Uniqueness Model and Factorial Invariance.
Multivariate Behav Res. 1992 Oct 1;27(4):489-507. doi: 10.1207/s15327906mbr2704_1.
10
Controlling Correlational Bias via Confirmatory Factor Analysis of MTMM Data.
Multivariate Behav Res. 1991 Oct 1;26(4):607-29. doi: 10.1207/s15327906mbr2604_3.

引用本文的文献

1
Comparing Likert and visual analogue scales in ecological momentary assessment.
Behav Res Methods. 2025 Jul 2;57(8):217. doi: 10.3758/s13428-025-02706-2.
2
A General Theorem and Proof for the Identification of Composed CFA Models.
Psychometrika. 2023 Dec;88(4):1334-1353. doi: 10.1007/s11336-023-09933-6. Epub 2023 Sep 19.
3
A Multimethod Latent State-Trait Model for Structurally Different And Interchangeable Methods.
Psychometrika. 2017 Mar;82(1):17-47. doi: 10.1007/s11336-016-9541-x. Epub 2016 Nov 30.
4
Analyzing Statistical Mediation with Multiple Informants: A New Approach with an Application in Clinical Psychology.
Front Psychol. 2015 Nov 13;6:1674. doi: 10.3389/fpsyg.2015.01674. eCollection 2015.
7
A longitudinal multilevel CFA-MTMM model for interchangeable and structurally different methods.
Front Psychol. 2014 Apr 17;5:311. doi: 10.3389/fpsyg.2014.00311. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验