Tschampel Sarah M, Kennerty Michael R, Woods Robert J
Complex Carbohydrate Research Center, 315 Riverbend Road, Athens, Georgia 30602.
J Chem Theory Comput. 2007 Sep 1;3(5):1721-1733. doi: 10.1021/ct700046j.
The inclusion of zero-mass point charges around electronegative atoms, such as oxygen, within molecular mechanical force fields is known to improve hydrogen-bonding directionality. In parallel, inclusion of lone-pairs (LPs) in the TIP5P water model increased its ability to reproduce both gas-phase and condensed-phase properties over its non-LP predecessor, TIP3P. Currently, most biomolecular parameter sets compute partial atomic charges via fitting of the classical molecular electrostatic potential (MEP) to the quantum mechanical MEP. Application of this methodology to optimize lone-pair description is therefore consistent with the current approach to modeling electrostatics and is straightforward to implement. Here, we present an atom-type specific lone-pair model, which leads to the most optimal LP placement for each atom type, and, notably, results in reproduction of the lone-pair description present in TIP5P. Carbohydrates are rich in hydroxyl groups, and development of a lone-pair inclusive carbohydrate force field for use with a lone-pair containing water model, such as TIP5P, ensures the compatibility between these two models. Implementation of this lone-pair model improves the geometry and energetics for a series of hydrogen-bonded clusters and the properties of several small molecule crystals over the non-LP containing force field.
已知在分子力学力场中,在诸如氧等电负性原子周围包含零质量点电荷可改善氢键的方向性。与此同时,TIP5P水模型中包含孤对电子(LPs),相较于其不含孤对电子的前身TIP3P,提高了其再现气相和凝聚相性质的能力。目前,大多数生物分子参数集通过将经典分子静电势(MEP)拟合到量子力学MEP来计算部分原子电荷。因此,应用这种方法来优化孤对电子描述与当前建模静电学的方法一致,并且易于实现。在这里,我们提出了一种原子类型特异性孤对电子模型,它为每种原子类型导致最优化的孤对电子排布,并且值得注意的是,能够再现TIP5P中存在的孤对电子描述。碳水化合物富含羟基,开发一种与包含孤对电子的水模型(如TIP5P)一起使用的包含孤对电子碳水化合物力场,可确保这两种模型之间的兼容性。与不含孤对电子的力场相比,这种孤对电子模型的实施改善了一系列氢键簇的几何结构和能量以及几种小分子晶体的性质。