Suppr超能文献

通过配体导向的甲苯磺酰基化学和点击化学相结合的方法对牛线粒体复合物I的49 kDa亚基中的Asp160进行精确化学修饰。

Pinpoint chemical modification of Asp160 in the 49 kDa subunit of bovine mitochondrial complex I via a combination of ligand-directed tosyl chemistry and click chemistry.

作者信息

Masuya Takahiro, Murai Masatoshi, Morisaka Hironobu, Miyoshi Hideto

机构信息

Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Sakyo-ku, Kyoto 606-8502, Japan.

出版信息

Biochemistry. 2014 Dec 16;53(49):7816-23. doi: 10.1021/bi501342w. Epub 2014 Dec 2.

Abstract

Through a ligand-directed tosyl (LDT) chemistry strategy using the synthetic acetogenin ligand AL1, we succeeded in the pinpoint alkynylation (-C≡CH) of Asp160 in the 49 kDa subunit of bovine complex I, which may be located in the inner part of the putative quinone binding cavity of the enzyme [Masuya, T., et al. (2014) Biochemistry, 53, 2307-2317]. This study provided a promising technique for diverse chemical modifications of complex I. To further improve this technique for its adaptation to intact complex I, we here synthesized the new acetogenin ligand AL2, possessing an azido (-N₃) group in place of the terminal alkyne in AL1, and attempted the pinpoint azidation of complex I in bovine heart submitochondrial particles. Careful proteomic analyses revealed that, just as in the case of AL1, azidation occurred at 49 kDa Asp160 with a reaction yield of ∼50%, verifying the high site specificity of our LDT chemistry using acetogenin ligands. This finding prompted us to speculate that a reactivity of the azido group incorporated into Asp160 (Asp160-N₃) against externally added chemicals can be employed to characterize the structural features of the quinone/inhibitor binding cavity. Consequently, we used a ring-strained cycloalkyne possessing a rhodamine fluorophore (TAMRA-DIBO), which can covalently attach to an azido group via so-called click chemistry without Cu¹⁺ catalysis, as the reaction partner of Asp160-N₃. We found that bulky TAMRA-DIBO is capable of reacting directly with Asp160-N₃ in intact complex I. Unexpectedly, the presence of an excess amount of short-chain ubiquinones as well as some strong inhibitors (e.g., quinazoline and fenpyroximate) did not interfere with the reaction between TAMRA-DIBO and Asp160-N₃; nevertheless, bullatacin, a member of the natural acetogenins, markedly interfered with this reaction. Taking the marked bulkiness of TAMRA-DIBO into consideration, it appears to be difficult to reconcile these results with the proposal that only a narrow entry point accessing to the quinone/inhibitor binding cavity exists in complex I [Baradaran, R., et al. (2013) Nature, 494, 443-448]; rather, they suggest that there may be another access path for TAMRA-DIBO to the cavity.

摘要

通过使用合成产乙酸素配体AL1的配体导向甲苯磺酰基(LDT)化学策略,我们成功地对牛复合体I 49 kDa亚基中的Asp160进行了精准炔基化(-C≡CH),该亚基可能位于该酶假定醌结合腔的内部[Masuya, T., 等人(2014年)《生物化学》,53, 2307 - 2317]。这项研究为复合体I的多种化学修饰提供了一种有前景的技术。为了进一步改进该技术以使其适用于完整的复合体I,我们在此合成了新的产乙酸素配体AL2,它在AL1的末端炔基位置具有一个叠氮基(-N₃),并尝试对牛心亚线粒体颗粒中的复合体I进行精准叠氮化。仔细的蛋白质组学分析表明,与AL1的情况一样,叠氮化发生在49 kDa的Asp160处,反应产率约为50%,证实了我们使用产乙酸素配体的LDT化学具有高位点特异性。这一发现促使我们推测,引入到Asp160(Asp160 - N₃)中的叠氮基与外部添加化学物质的反应活性可用于表征醌/抑制剂结合腔的结构特征。因此,我们使用了一种带有罗丹明荧光团的环张力环炔(TAMRA - DIBO),它可以通过所谓的无铜¹⁺催化的点击化学与叠氮基共价连接,作为Asp160 - N₃的反应伙伴。我们发现体积较大的TAMRA - DIBO能够在完整的复合体I中直接与Asp160 - N₃反应。出乎意料的是,过量的短链泛醌以及一些强抑制剂(如喹唑啉和唑螨酯)的存在并不干扰TAMRA - DIBO与Asp160 - N₃之间的反应;然而,天然产乙酸素的一种——布拉他辛,却显著干扰了该反应。考虑到TAMRA - DIBO的显著体积,似乎很难将这些结果与关于复合体I中仅存在一个通向醌/抑制剂结合腔的狭窄入口点的提议相协调[Baradaran, R., 等人(2013年)《自然》,494, 443 - 448];相反,它们表明可能存在另一条TAMRA - DIBO进入该腔的通道。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验