Siman R, Noszek J C, Kegerise C
Neuroscience Group, DuPont Company, Wilmington, Delaware 19898.
J Neurosci. 1989 May;9(5):1579-90. doi: 10.1523/JNEUROSCI.09-05-01579.1989.
Sustained stimulation of receptors for excitatory amino acids leads to both activation of the calcium-dependent cysteine protease calpain I and to the death of receptive neurons. Here, we have examined the relationship between the calpain I activation and neurodegeneration. Calpain I activation was manifested as increased levels of the major proteolytic fragments of the calpain substrate spectrin, detected and quantified by immunoblotting. Intraventricular administration of the excitatory amino acids kainate or N-methyl-D-aspartate (NMDA) produced calpain I-mediated spectrin degradation and hippocampal neuronal loss. The NMDA antagonist 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid selectively blocked NMDA- but not kainate-induced protease activation and hippocampal damage. Temporally, spectrin degradation preceded the onset of pyramidal cell degeneration monitored by silver-impregnation histochemistry. Only those doses of kainate (0.15-1 microgram) or NMDA (40-80 micrograms) sufficient to cause hippocampal damage markedly increased spectrin breakdown. Both the neuronal damage and calpain I activation induced by kainate occurred primarily in area CA3. Degeneration of hippocampal neurons evoked by colchicine was not accompanied by calpain activation, indicating that proteolysis is not stimulated simply as a secondary response to neuronal destruction. Thus, a close correspondence exists between excitatory amino acid induction of neuronal degeneration and of calpain I-mediated spectrin degradation. The results suggest that calpain I may be an intracellular mediator of excitatory amino acid action, and further, they support the hypothesis that calcium influx and calpain I activation are obligatory events in the initiation of excitatory amino acid neurotoxicity.
对兴奋性氨基酸受体的持续刺激会导致钙依赖性半胱氨酸蛋白酶钙蛋白酶I的激活以及感受神经元的死亡。在此,我们研究了钙蛋白酶I激活与神经退行性变之间的关系。钙蛋白酶I的激活表现为通过免疫印迹检测和定量的钙蛋白酶底物血影蛋白主要蛋白水解片段水平的增加。脑室内注射兴奋性氨基酸红藻氨酸或N-甲基-D-天冬氨酸(NMDA)会导致钙蛋白酶I介导的血影蛋白降解和海马神经元丢失。NMDA拮抗剂3-(2-羧基哌嗪-4-基)-丙基-1-膦酸选择性地阻断NMDA诱导的而非红藻氨酸诱导的蛋白酶激活和海马损伤。在时间上,血影蛋白降解先于通过银浸染组织化学监测的锥体细胞变性的发生。只有那些足以导致海马损伤的红藻氨酸(0.15 - 1微克)或NMDA(40 - 80微克)剂量才会显著增加血影蛋白的分解。红藻氨酸诱导的神经元损伤和钙蛋白酶I激活主要发生在CA3区。秋水仙碱诱发的海马神经元变性并未伴随钙蛋白酶激活,这表明蛋白水解并非仅仅作为对神经元破坏的继发反应而被刺激。因此,兴奋性氨基酸诱导的神经元变性与钙蛋白酶I介导的血影蛋白降解之间存在密切对应关系。结果表明钙蛋白酶I可能是兴奋性氨基酸作用的细胞内介质,此外,它们支持钙内流和钙蛋白酶I激活是兴奋性氨基酸神经毒性起始过程中的必要事件这一假说。