Taylor Mark P, Luettmer-Strathmann Jutta
Department of Physics, Hiram College, Hiram, Ohio 44234, USA.
Department of Physics and Department of Chemistry, University of Akron, Akron, Ohio 44325, USA.
J Chem Phys. 2014 Nov 28;141(20):204906. doi: 10.1063/1.4902252.
The zeros of the canonical partition functions for a flexible polymer chain tethered to an attractive flat surface are computed for chains up to length N = 1536. We use a bond-fluctuation model for the polymer and obtain the density of states for the tethered chain by Wang-Landau sampling. The partition function zeros in the complex e(β)-plane are symmetric about the real axis and densest in a boundary region that has the shape of a nearly closed circle, centered at the origin, terminated by two flaring tails. This structure defines a root-free zone about the positive real axis and follows Yang-Lee theory. As the chain length increases, the base of each tail moves toward the real axis, converging on the phase-transition point in the thermodynamic limit. We apply finite-size scaling theory of partition-function zeros and show that the crossover exponent defined through the leading zero is identical to the standard polymer adsorption crossover exponent ϕ. Scaling analysis of the leading zeros locates the polymer adsorption transition in the thermodynamic (N → ∞) limit at reduced temperature Tc ()=1.027(3) [βc=1/Tc ()=0.974(3)] with crossover exponent ϕ = 0.515(25). Critical exponents for the order parameter and specific heat are determined to be β̃=0.97(5) and α = 0.03(4), respectively. A universal scaling function for the average number of surface contacts is also constructed.
我们计算了长度N = 1536及以下的、连接在有吸引力的平面上的柔性聚合物链的正则配分函数的零点。我们对聚合物使用键涨落模型,并通过王-朗道抽样获得束缚链的态密度。复e(β)平面中的配分函数零点关于实轴对称,并且在一个边界区域中最为密集,该区域呈近似封闭的圆形,以原点为中心,由两条向外展开的尾巴终止。这种结构在正实轴周围定义了一个无零点区域,并且符合杨-李理论。随着链长增加,每条尾巴的底部向实轴移动,在热力学极限下收敛于相变点。我们应用配分函数零点的有限尺寸标度理论,并表明通过主导零点定义的交叉指数与标准聚合物吸附交叉指数ϕ相同。对主导零点的标度分析确定了聚合物吸附转变在热力学(N → ∞)极限下的约化温度Tc ()=1.027(3) [βc=1/Tc ()=0.974(3)],交叉指数ϕ = 0.515(25)。序参量和比热的临界指数分别确定为β̃=0.97(5)和α = 0.03(4)。还构建了表面接触平均数量的通用标度函数。