Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 Canada.
Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 Canada ; Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1 Canada ; Neemo Inc, 1280 Main Street West, Hamilton, Ontario L8S 4K1 Canada.
Biotechnol Biofuels. 2014 Nov 19;7(1):163. doi: 10.1186/s13068-014-0163-1. eCollection 2014.
Clostridium pasteurianum is one of the most promising biofuel producers within the genus Clostridium owing to its unique metabolic ability to ferment glycerol into butanol. Although an efficient means is available for introducing foreign DNA to C. pasteurianum, major genetic tools, such as gene knockout, knockdown, or genome editing, are lacking, preventing metabolic engineering of C. pasteurianum.
Here we present a methodology for performing chromosomal gene disruption in C. pasteurianum using the programmable lactococcus Ll.ltrB group II intron. Gene disruption was initially found to be impeded by inefficient electrotransformation of Escherichia coli-C. pasteurianum shuttle vectors, presumably due to host restriction. By assessing the ability of various vector deletion derivatives to electrotransform C. pasteurianum and probing the microorganism's methylome using next-generation sequence data, we identified a new C. pasteurianum Type I restriction-methylation system, CpaAII, with a predicted recognition sequence of 5'-AAGNNNNNCTCC-3' (N = A, C, G, or T). Following rescue of high-level electrotransformation via mutation of the sole CpaAII site within the shuttle vectors, we retargeted the intron to the cpaAIR gene encoding the CpaAI Type II restriction endonuclease (recognition site of 5'-CGCG-3'). Intron insertion was potentially hindered by low retrohoming efficiency, yet this limitation could be overcome by a procedure for enrichment of the intron insertion. The resulting ΔcpaAIR mutant strain was efficiently electrotransformed with M.FnuDII-unmethylated plasmid DNA.
The markerless and plasmidless ΔcpaAIR mutant strain of C. pasteurianum developed in this study can serve as a general host strain for future genetic and metabolic manipulation. Further, the associated gene disruption protocol should not only serve as a guide for chromosomal gene inactivation studies involving mobile group II introns, but also prove invaluable for applying metabolic engineering strategies to C. pasteurianum.
凝结芽孢杆菌是梭菌属中最有前途的生物燃料生产者之一,因为它具有将甘油发酵成丁醇的独特代谢能力。尽管有一种有效的方法可以将外源 DNA 引入凝结芽孢杆菌,但缺乏主要的遗传工具,如基因敲除、敲低或基因组编辑,从而阻止了凝结芽孢杆菌的代谢工程。
本文介绍了一种利用可编程乳球菌 Ll.ltrB 组 II 内含子在凝结芽孢杆菌中进行染色体基因敲除的方法。最初发现基因敲除受到大肠杆菌-凝结芽孢杆菌穿梭载体电转化效率低下的阻碍,这可能是由于宿主限制所致。通过评估各种载体缺失衍生物转化凝结芽孢杆菌的能力,并使用下一代测序数据探测微生物的甲基组,我们鉴定了一种新的凝结芽孢杆菌 I 型限制-甲基化系统 CpaAII,其预测的识别序列为 5'-AAGNNNNNCTCC-3'(N=A、C、G 或 T)。通过突变穿梭载体中唯一的 CpaAII 位点,拯救了高水平电转化后,我们将内含子重新靶向编码 CpaAI 型 II 限制内切酶(识别序列为 5'-CGCG-3')的 cpaAIR 基因。内含子插入可能受到 retrohoming 效率低的阻碍,但通过富集内含子插入的程序可以克服这一限制。所得的 ΔcpaAIR 突变株可以有效地用电转化未经 M.FnuDII 甲基化的质粒 DNA。
本研究中开发的无标记和无质粒的凝结芽孢杆菌 ΔcpaAIR 突变株可作为未来遗传和代谢操作的通用宿主菌株。此外,相关的基因敲除方案不仅应作为涉及移动组 II 内含子的染色体基因失活研究的指南,而且对于将代谢工程策略应用于凝结芽孢杆菌也将非常有价值。