Suppr超能文献

纵观全局:一种用于行为斑马鱼中神经回路功能映射的综合成像方法。

Seeing the whole picture: A comprehensive imaging approach to functional mapping of circuits in behaving zebrafish.

作者信息

Feierstein C E, Portugues R, Orger M B

机构信息

Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasília, Doca de Pedrouços, Lisbon 1400-038, Portugal.

Max Planck Institute of Neurobiology, Am Klopferspitz 18, 82152, Germany.

出版信息

Neuroscience. 2015 Jun 18;296:26-38. doi: 10.1016/j.neuroscience.2014.11.046. Epub 2014 Nov 27.

Abstract

In recent years, the zebrafish has emerged as an appealing model system to tackle questions relating to the neural circuit basis of behavior. This can be attributed not just to the growing use of genetically tractable model organisms, but also in large part to the rapid advances in optical techniques for neuroscience, which are ideally suited for application to the small, transparent brain of the larval fish. Many characteristic features of vertebrate brains, from gross anatomy down to particular circuit motifs and cell-types, as well as conserved behaviors, can be found in zebrafish even just a few days post fertilization, and, at this early stage, the physical size of the brain makes it possible to analyze neural activity in a comprehensive fashion. In a recent study, we used a systematic and unbiased imaging method to record the pattern of activity dynamics throughout the whole brain of larval zebrafish during a simple visual behavior, the optokinetic response (OKR). This approach revealed the broadly distributed network of neurons that were active during the behavior and provided insights into the fine-scale functional architecture in the brain, inter-individual variability, and the spatial distribution of behaviorally relevant signals. Combined with mapping anatomical and functional connectivity, targeted electrophysiological recordings, and genetic labeling of specific populations, this comprehensive approach in zebrafish provides an unparalleled opportunity to study complete circuits in a behaving vertebrate animal.

摘要

近年来,斑马鱼已成为一个有吸引力的模型系统,用于解决与行为的神经回路基础相关的问题。这不仅归因于遗传上易于处理的模型生物的使用日益增加,还很大程度上归功于神经科学光学技术的快速发展,这些技术非常适合应用于幼体鱼的小而透明的大脑。即使在受精后仅几天,在斑马鱼中也能发现脊椎动物大脑的许多特征,从大体解剖结构到特定的神经回路模式和细胞类型,以及保守行为。在这个早期阶段,大脑的物理尺寸使得以全面的方式分析神经活动成为可能。在最近的一项研究中,我们使用了一种系统且无偏见的成像方法,在一种简单的视觉行为——视动反应(OKR)期间,记录幼体斑马鱼全脑的活动动态模式。这种方法揭示了行为期间活跃的广泛分布的神经元网络,并深入了解了大脑中的精细功能结构、个体间变异性以及行为相关信号的空间分布。结合绘制解剖和功能连接图谱、靶向电生理记录以及特定群体的基因标记,斑马鱼中的这种综合方法为研究行为中的脊椎动物的完整神经回路提供了无与伦比的机会。

相似文献

1
Seeing the whole picture: A comprehensive imaging approach to functional mapping of circuits in behaving zebrafish.
Neuroscience. 2015 Jun 18;296:26-38. doi: 10.1016/j.neuroscience.2014.11.046. Epub 2014 Nov 27.
2
Circuit neuroscience in zebrafish.
Curr Biol. 2010 Apr 27;20(8):R371-81. doi: 10.1016/j.cub.2010.02.039.
3
Two-photon imaging of neural population activity in zebrafish.
Methods. 2013 Aug 15;62(3):255-67. doi: 10.1016/j.ymeth.2013.05.016. Epub 2013 May 31.
4
Whole-brain activity maps reveal stereotyped, distributed networks for visuomotor behavior.
Neuron. 2014 Mar 19;81(6):1328-1343. doi: 10.1016/j.neuron.2014.01.019.
5
Brain-wide circuit interrogation at the cellular level guided by online analysis of neuronal function.
Nat Methods. 2018 Dec;15(12):1117-1125. doi: 10.1038/s41592-018-0221-x. Epub 2018 Nov 30.
6
Systems neuroscience in Drosophila: Conceptual and technical advantages.
Neuroscience. 2015 Jun 18;296:3-14. doi: 10.1016/j.neuroscience.2014.06.035. Epub 2014 Jun 25.
7
From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response.
Cell. 2016 Nov 3;167(4):947-960.e20. doi: 10.1016/j.cell.2016.10.019.
8
Prolonged, brain-wide expression of nuclear-localized GCaMP3 for functional circuit mapping.
Front Neural Circuits. 2014 Nov 26;8:138. doi: 10.3389/fncir.2014.00138. eCollection 2014.
9
10
Optogenetics in a transparent animal: circuit function in the larval zebrafish.
Curr Opin Neurobiol. 2013 Feb;23(1):119-26. doi: 10.1016/j.conb.2012.11.001. Epub 2012 Dec 12.

引用本文的文献

1
Rastermap: a discovery method for neural population recordings.
Nat Neurosci. 2025 Jan;28(1):201-212. doi: 10.1038/s41593-024-01783-4. Epub 2024 Oct 16.
2
Convergent Comodulation Reduces Interindividual Variability of Circuit Output.
eNeuro. 2024 Sep 10;11(9). doi: 10.1523/ENEURO.0167-24.2024. Print 2024 Sep.
3
Modulation by Neuropeptides with Overlapping Targets Results in Functional Overlap in Oscillatory Circuit Activation.
J Neurosci. 2024 Jan 3;44(1):e1201232023. doi: 10.1523/JNEUROSCI.1201-23.2023.
4
Evaluation of cadmium and mercury on cardiovascular and neurological systems: Effects on humans and fish.
Toxicol Rep. 2023 Apr 18;10:498-508. doi: 10.1016/j.toxrep.2023.04.009. eCollection 2023.
5
A Structural Atlas of the Developing Zebrafish Telencephalon Based on Spatially-Restricted Transgene Expression.
Front Neuroanat. 2022 Jun 1;16:840924. doi: 10.3389/fnana.2022.840924. eCollection 2022.
6
Optogenetic Methods to Investigate Brain Alterations in Preclinical Models.
Cells. 2022 Jun 5;11(11):1848. doi: 10.3390/cells11111848.
7
Recording Synaptic Transmission from Auditory Mixed Synapses on the Mauthner Cells of Developing Zebrafish.
eNeuro. 2022 Jun 21;9(3). doi: 10.1523/ENEURO.0021-22.2022. Print 2022 May-Jun.
9
Perception-driven dynamics of mimicry based on attractor field model.
Interface Focus. 2021 Apr 16;11(3):20200052. doi: 10.1098/rsfs.2020.0052. eCollection 2021 Jun 6.
10
Neurodegeneration, Neuroprotection and Regeneration in the Zebrafish Retina.
Cells. 2021 Mar 12;10(3):633. doi: 10.3390/cells10030633.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验