DuBuc Timothy Q, Dattoli Ada A, Babonis Leslie S, Salinas-Saavedra Miguel, Röttinger Eric, Martindale Mark Q, Postma Marten
BMC Cell Biol. 2014 Nov 30;15:44. doi: 10.1186/s12860-014-0044-2.
Cnidarians are the closest living relatives to bilaterians and have been instrumental to studying the evolution of bilaterian properties. The cnidarian model, Nematostella vectensis, is a unique system in which embryology and regeneration are both studied, making it an ideal candidate to develop in vivo imaging techniques. Live imaging is the most direct way for quantitative and qualitative assessment of biological phenomena. Actin and tubulin are cytoskeletal proteins universally important for regulating many embryological processes but so far studies in Nematostella primarily focused on the localization of these proteins in fixed embryos.
We used fluorescent probes expressed in vivo to investigate the dynamics of Nematostella development. Lifeact-mTurquoise2, a fluorescent cyan F-actin probe, can be visualized within microvilli along the cellular surface throughout embryonic development and is stable for two months after injection. Co-expression of Lifeact-mTurquoise2 with End-Binding protein1 (EB1) fused to mVenus or tdTomato-NLS allows for the visualization of cell-cycle properties in real time. Utilizing fluorescent probes in vivo helped to identify a concentrated 'flash' of Lifeact-mTurquoise2 around the nucleus, immediately prior to cytokinesis in developing embryos. Moreover, Lifeact-mTurquoise2 expression in adult animals allowed the identification of various cell types as well as cellular boundaries.
The methods developed in this manuscript provide an alternative protocol to investigate Nematostella development through in vivo cellular analysis. This study is the first to utilize the highly photo-stable florescent protein mTurquoise2 as a marker for live imaging. Finally, we present a clear methodology for the visualization of minute temporal events during cnidarian development.
刺胞动物是现存与两侧对称动物亲缘关系最近的生物,对研究两侧对称动物特性的进化具有重要意义。刺胞动物模型——星状海葵,是一个独特的系统,在该系统中胚胎学和再生过程都得到了研究,这使其成为开发体内成像技术的理想候选对象。实时成像对于生物现象的定量和定性评估而言是最直接的方法。肌动蛋白和微管蛋白是细胞骨架蛋白,对调节许多胚胎发育过程普遍重要,但迄今为止,对星状海葵的研究主要集中于这些蛋白在固定胚胎中的定位。
我们使用体内表达的荧光探针来研究星状海葵发育的动态过程。Lifeact-mTurquoise2是一种荧光青色F-肌动蛋白探针,在整个胚胎发育过程中,可在沿细胞表面的微绒毛内观察到,注射后两个月内保持稳定。将Lifeact-mTurquoise2与融合了mVenus的末端结合蛋白1(EB1)或tdTomato-NLS共表达,可实时观察细胞周期特性。在体内使用荧光探针有助于识别发育中的胚胎在胞质分裂之前,细胞核周围出现的Lifeact-mTurquoise2集中“闪光”。此外,Lifeact-mTurquoise2在成年动物中的表达有助于识别各种细胞类型以及细胞边界。
本论文中开发的方法提供了一种通过体内细胞分析来研究星状海葵发育的替代方案。本研究首次利用高度光稳定的荧光蛋白mTurquoise2作为实时成像的标记物。最后,我们展示了一种清晰的方法,用于观察刺胞动物发育过程中的微小瞬时事件。