Li Yinhui, Zhao Yirong, Chan Winghong, Wang Yijun, You Qihua, Liu Changhui, Zheng Jing, Li Jishan, Yang Sheng, Yang Ronghua
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University , Changsha, 410082, China.
Anal Chem. 2015 Jan 6;87(1):584-91. doi: 10.1021/ac503240x. Epub 2014 Dec 10.
Levels of lysosomal copper are tightly regulated in the human body. However, few methods for monitoring dynamic changes in copper pools are available, thus limiting the ability to diagnostically assess the influence of copper accumulation on health status. We herein report the development of a dual target and location-activated rhodamine-spiropyran probe, termed Rhod-SP, activated by the presence of lysosomal Cu(2+). Rhod-SP contains a proton recognition unit of spiropyran, which provides molecular switching capability, and a latent rhodamine fluorophore for signal transduction. Upon activation by lysosomal acidic pH, Rhod-SP binds with Cu(2+) by spiropyran-based proton activation, promoting, in turn, rhodamine ring opening, which shows a "switched on" fluorescence signal. However, to protect Rhod-SP from degradation and interference by the physiological environment, it is engineered on mesoporous silica nanoparticles (MSNs), and the surface of Rhod-SP@MSNs is further anchored with β-cyclodextrin (β-CD) to enhance the solubility and bioavailability of Rhod-SP@MSN-CD. Next, to enhance cell specificity, a guiding unit of c(RGDyK) peptide conjugated adamantane (Ad-RGD) as prototypical system, is incorporated on the surface of Rhod-SP@MSN-CD to target integrin αvβ3 and αvβ5 overexpressed on cancer cells. Fluorescence imaging showed that both Rhod-SP@MSN-CD and Rhod-SP@MSN-CD-RGD were suitable for visualizing exogenous and endogenous Cu(2+) in lysosomes of living cells. This strategy addresses some common challenges of chemical probes in biosensing, such as spatial resolution in cell imaging, the solubility and stability in biological system, and the interference from intracellular species. The newly designed nanoprobe, which allows one to track, on a location-specific basis, and visualize lysosomal Cu(2+), offers a potentially rich opportunity to examine copper physiology in both healthy and diseased states.
人体中溶酶体铜的水平受到严格调控。然而,用于监测铜池动态变化的方法很少,因此限制了诊断评估铜积累对健康状况影响的能力。我们在此报告了一种双靶点和定位激活的罗丹明-螺吡喃探针(称为Rhod-SP)的开发,该探针由溶酶体Cu(2+)激活。Rhod-SP包含一个螺吡喃质子识别单元,它提供分子开关能力,以及一个潜在的罗丹明荧光团用于信号转导。在溶酶体酸性pH值激活后,Rhod-SP通过基于螺吡喃的质子激活与Cu(2+)结合,进而促进罗丹明环打开,显示出“开启”的荧光信号。然而,为了保护Rhod-SP免受生理环境的降解和干扰,它被设计在介孔二氧化硅纳米颗粒(MSNs)上,并且Rhod-SP@MSNs的表面进一步锚定了β-环糊精(β-CD)以提高Rhod-SP@MSN-CD的溶解度和生物利用度。接下来,为了增强细胞特异性,一种作为原型系统的c(RGDyK)肽缀合金刚烷(Ad-RGD)引导单元被整合到Rhod-SP@MSN-CD的表面,以靶向癌细胞上过表达的整合素αvβ3和αvβ5。荧光成像表明,Rhod-SP@MSN-CD和Rhod-SP@MSN-CD-RGD都适用于可视化活细胞溶酶体中的外源性和内源性Cu(2+)。该策略解决了化学探针在生物传感中的一些常见挑战,如细胞成像中的空间分辨率、生物系统中的溶解度和稳定性以及细胞内物质的干扰。新设计的纳米探针能够在特定位置跟踪并可视化溶酶体Cu(2+),为研究健康和疾病状态下的铜生理学提供了潜在的丰富机会。