Suppr超能文献

视觉内容的语义稀疏重编码在图像应用中的应用。

Semantic sparse recoding of visual content for image applications.

出版信息

IEEE Trans Image Process. 2015 Jan;24(1):176-88. doi: 10.1109/TIP.2014.2375641. Epub 2014 Nov 26.

Abstract

This paper presents a new semantic sparse recoding method to generate more descriptive and robust representation of visual content for image applications. Although the visual bag-of-words (BOW) representation has been reported to achieve promising results in different image applications, its visual codebook is completely learnt from low-level visual features using quantization techniques and thus the so-called semantic gap remains unbridgeable. To handle such challenging issue, we utilize the annotations (predicted by algorithms or shared by users) of all the images to improve the original visual BOW representation. This is further formulated as a sparse coding problem so that the noise issue induced by the inaccurate quantization of visual features can also be handled to some extent. By developing an efficient sparse coding algorithm, we successfully generate a new visual BOW representation for image applications. Since such sparse coding has actually incorporated the high-level semantic information into the original visual codebook, we thus consider it as semantic sparse recoding of the visual content. Finally, we apply our semantic sparse recoding method to automatic image annotation and social image classification. The experimental results on several benchmark datasets show the promising performance of our semantic sparse recoding method in these two image applications.

摘要

本文提出了一种新的语义稀疏编码方法,用于为图像应用生成更具描述性和鲁棒性的视觉内容表示。尽管视觉词袋 (BOW) 表示已经在不同的图像应用中取得了有希望的结果,但它的视觉代码本完全是使用量化技术从低级视觉特征中学到的,因此所谓的语义差距仍然无法弥合。为了处理这个具有挑战性的问题,我们利用所有图像的注释(由算法预测或由用户共享)来改进原始的视觉 BOW 表示。这进一步被表述为稀疏编码问题,以便可以在某种程度上处理由视觉特征的不准确量化引起的噪声问题。通过开发一种有效的稀疏编码算法,我们成功地为图像应用生成了新的视觉 BOW 表示。由于这种稀疏编码实际上已经将高级语义信息纳入到原始视觉代码本中,因此我们将其视为视觉内容的语义稀疏编码。最后,我们将我们的语义稀疏编码方法应用于自动图像注释和社交图像分类。在几个基准数据集上的实验结果表明,我们的语义稀疏编码方法在这两个图像应用中具有有希望的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验