Suppr超能文献

使用同步辐射微傅里叶变换红外光谱仪和扫描电子显微镜追踪组织工程骨中的钙化情况。

Tracking calcification in tissue-engineered bone using synchrotron micro-FTIR and SEM.

作者信息

Deegan Anthony J, Cinque Gianfelice, Wehbe Katia, Konduru Sandeep, Yang Ying

机构信息

Institute for Science and Technology in Medicine, School of Medicine, Keele University, Stoke-on-Trent, ST4 7QB, UK.

出版信息

Anal Bioanal Chem. 2015 Feb;407(4):1097-105. doi: 10.1007/s00216-014-8316-4. Epub 2014 Dec 2.

Abstract

One novel tissue engineering approach to mimic in vivo bone formation is the use of aggregate or micromass cultures. Various qualitative and quantitative techniques, such as histochemical staining, protein assay kits and RT-PCR, have been used previously on cellular aggregate studies to investigate how these intricate arrangements lead to mature bone tissue. However, these techniques struggle to reveal spatial and temporal distribution of proliferation and mineralization simultaneously. Synchrotron-based Fourier transform infrared microspectroscopy (micro-FTIR) offers a unique insight at the molecular scale by coupling high IR sensitivity to organic matter with the high spatial resolution allowed by diffraction limited SR microbeam. This study is set to investigate the effects of culture duration and aggregate size on the dynamics and spatial distribution of calcification in engineered bone aggregates by a combination of micro-FTIR and scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDX). A murine bone cell line has been used, and small/large bone aggregates have been induced using different chemically treated culture substrates. Our findings suggest that bone cell aggregate culturing can greatly increase levels of mineralization over short culture periods. The size of the aggregates influences mineralisation rates with larger aggregates mineralizing at a faster rate than their smaller counterparts. The micro-FTIR mapping has demonstrated that mineralization in the larger aggregates initiated from the periphery and spread to the centre, whilst the smaller aggregates have more minerals in the centre at the early stage and deposited more in the periphery after further culturing, implying that aggregate size influences calcification distribution and development over time. SEM/EDX data correlates well with the micro-FTIR results for the total mineral content. Thus, synchrotron-based micro-FTIR can accurately track mineralization process/mechanism in the engineered bone.

摘要

一种模拟体内骨形成的新型组织工程方法是使用聚集体或微团培养。以前在细胞聚集体研究中使用了各种定性和定量技术,如组织化学染色、蛋白质检测试剂盒和逆转录聚合酶链反应(RT-PCR),以研究这些复杂的排列如何导致成熟的骨组织。然而,这些技术难以同时揭示增殖和矿化的时空分布。基于同步加速器的傅里叶变换红外显微光谱(显微傅里叶变换红外光谱)通过将对有机物的高红外灵敏度与衍射极限同步辐射微束所允许的高空间分辨率相结合,在分子尺度上提供了独特的见解。本研究旨在通过结合显微傅里叶变换红外光谱和扫描电子显微镜(SEM)/能量色散X射线光谱(EDX),研究培养持续时间和聚集体大小对工程化骨聚集体中钙化动力学和空间分布的影响。使用了一种小鼠骨细胞系,并使用不同的化学处理培养底物诱导形成小/大骨聚集体。我们的研究结果表明,骨细胞聚集体培养可以在短培养期内大大提高矿化水平。聚集体的大小影响矿化速率,较大的聚集体比较小的聚集体矿化速率更快。显微傅里叶变换红外光谱映射表明,较大聚集体中的矿化从周边开始并扩散到中心,而较小的聚集体在早期中心有更多矿物质,进一步培养后在周边沉积更多,这意味着聚集体大小随时间影响钙化分布和发展。SEM/EDX数据与总矿物质含量的显微傅里叶变换红外光谱结果相关性良好。因此,基于同步加速器的显微傅里叶变换红外光谱可以准确跟踪工程化骨中的矿化过程/机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验