Suppr超能文献

具有独特Si@碳@空隙@石墨烯结构的硅基复合粉末具有优异的锂离子存储性能。

Superior lithium-ion storage properties of si-based composite powders with unique Si@carbon@void@graphene configuration.

作者信息

Choi Seung Ho, Jung Dae Soo, Choi Jang Wook, Kang Yun Chan

机构信息

Department of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713 (Republic of Korea), Fax: (+82) 2-928-3584.

出版信息

Chemistry. 2015 Jan 26;21(5):2076-82. doi: 10.1002/chem.201404981. Epub 2014 Nov 28.

Abstract

Composite powders of the configuration Si@carbon@void@graphene were prepared by a one-step spray pyrolysis process, by adding polyvinylpyrrolidone (PVP) to a precursor solution containing graphene oxide (GO) sheets and silicon nanoparticles (NPs). Morphological analysis indicates that the individual Si NPs are coated with amorphous carbon and encapsulated in a micrometer-sized graphene ball structure that offers a large amount of buffer space. The addition of PVP improves the stability of the colloidal spray solution containing the GO sheets and the Si NPs. Consequently, the prepared Si@C@void@graphene composite powders have a relatively more uniform morphology than the Si@void@graphene composite powders prepared from the spray solution without PVP. The first charge and discharge capacities of the Si@C@void@graphene electrode measured at 0.1 A g(-1) are as high as 3102 and 2215 mA h g(-1) , respectively. With an increase in the current rate from 0.5 to 11 A g(-1) , 46 % of the original capacity (i.e., 2134 mA h g(-1) ) is maintained. After 500 cycles at a high rate of 7 A g(-1) , the Si@C@void@graphene electrode shows 84 % capacity retention and 99.8 % of the average Coulombic efficiency. The superior cycling and rate capabilities of the prepared Si@C@void@graphene electrode could be attributed to the uniform carbon coating of the Si NPs and the graphene ball structure, which facilitates efficient diffusion of Li ions and prevents the penetration of electrolyte into graphene ball during cycling.

摘要

通过一步喷雾热解工艺制备了具有Si@碳@空隙@石墨烯结构的复合粉末,方法是将聚乙烯吡咯烷酮(PVP)添加到含有氧化石墨烯(GO)片和硅纳米颗粒(NPs)的前驱体溶液中。形态分析表明,单个Si NPs被非晶碳包覆,并封装在一个提供大量缓冲空间的微米级石墨烯球结构中。PVP的加入提高了含有GO片和Si NPs的胶体喷雾溶液的稳定性。因此,制备的Si@C@空隙@石墨烯复合粉末比由不含PVP的喷雾溶液制备的Si@空隙@石墨烯复合粉末具有相对更均匀的形态。在0.1 A g(-1)下测量的Si@C@空隙@石墨烯电极的首次充放电容量分别高达3102和2215 mA h g(-1)。随着电流速率从0.5增加到11 A g(-1),保持了原始容量的46%(即2134 mA h g(-1))。在7 A g(-1)的高电流速率下循环500次后,Si@C@空隙@石墨烯电极显示出84%的容量保持率和99.8%的平均库仑效率。所制备的Si@C@空隙@石墨烯电极优异的循环和倍率性能可归因于Si NPs的均匀碳包覆和石墨烯球结构,这有利于锂离子的有效扩散,并防止在循环过程中电解质渗透到石墨烯球中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验