文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Nonlinear predictive control for Hammerstein-Wiener systems.

作者信息

Ławryńczuk Maciej

机构信息

Institute of Control and Computation Engineering, Faculty of Electronics and Information Technology, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland.

出版信息

ISA Trans. 2015 Mar;55:49-62. doi: 10.1016/j.isatra.2014.09.018. Epub 2014 Oct 23.


DOI:10.1016/j.isatra.2014.09.018
PMID:25451816
Abstract

This paper discusses a nonlinear Model Predictive Control (MPC) algorithm for multiple-input multiple-output dynamic systems represented by cascade Hammerstein-Wiener models. The block-oriented Hammerstein-Wiener model, which consists of a linear dynamic block embedded between two nonlinear steady-state blocks, may be successfully used to describe numerous processes. A direct application of such a model for prediction in MPC results in a nonlinear optimisation problem which must be solved at each sampling instant on-line. To reduce the computational burden, a linear approximation of the predicted system trajectory linearised along the future control scenario is successively found on-line and used for prediction. Thanks to linearisation, the presented algorithm needs only quadratic optimisation, time-consuming and difficult on-line nonlinear optimisation is not necessary. In contrast to some control approaches for cascade models, the presented algorithm does not need inverse of the steady-state blocks of the model. For two benchmark systems, it is demonstrated that the algorithm gives control accuracy very similar to that obtained in the MPC approach with nonlinear optimisation while performance of linear MPC and MPC with simplified linearisation is much worse.

摘要

相似文献

[1]
Nonlinear predictive control for Hammerstein-Wiener systems.

ISA Trans. 2015-3

[2]
Nonlinear predictive control of a boiler-turbine unit: A state-space approach with successive on-line model linearisation and quadratic optimisation.

ISA Trans. 2017-3

[3]
Constrained computationally efficient nonlinear predictive control of Solid Oxide Fuel Cell: Tuning, feasibility and performance.

ISA Trans. 2020-4

[4]
Efficient nonlinear predictive control of a biochemical reactor using neural models.

Bioprocess Biosyst Eng. 2009-4

[5]
Identification of a class of Wiener and Hammerstein-type nonlinear processes with monotonic static gains.

ISA Trans. 2010-5-15

[6]
The identification of nonlinear biological systems: Wiener and Hammerstein cascade models.

Biol Cybern. 1986

[7]
Fast Nonlinear Predictive Control Using Classical and Parallel Wiener Models: A Comparison for a Neutralization Reactor Process.

Sensors (Basel). 2023-11-30

[8]
Identification of multivariable nonlinear systems in the presence of colored noises using iterative hierarchical least squares algorithm.

ISA Trans. 2014-7

[9]
Recursive parameter estimation for Hammerstein-Wiener systems using modified EKF algorithm.

ISA Trans. 2017-9

[10]
Computationally Efficient Nonlinear Model Predictive Control Using the L Cost-Function.

Sensors (Basel). 2021-8-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索