Suppr超能文献

均匀纳米液滴生长的数值研究。

Numerical study of homogeneous nanodroplet growth.

机构信息

A∗STAR Institute of High Performance Computing, 1 Fusionopolis Way, Connexis, Singapore 138632, Singapore.

A∗STAR Institute of High Performance Computing, 1 Fusionopolis Way, Connexis, Singapore 138632, Singapore.

出版信息

J Colloid Interface Sci. 2015 Jan 15;438:47-54. doi: 10.1016/j.jcis.2014.09.066. Epub 2014 Oct 6.

Abstract

We investigate the axisymmetric homogeneous growth of 10-100 nm water nanodroplets on a substrate surface. The main mechanism of droplet growth is attributed to the accumulation of laterally diffusing water monomers, formed by the absorption of water vapour in the environment onto the substrate. Under assumptions of quasi-steady thermodynamic equilibrium, the nanodroplet evolves according to the augmented Young-Laplace equation. Using continuum theory, we model the dynamics of nanodroplet growth including the coupled effects of disjoining pressure, contact angle and monomer diffusion. Our numerical results show that the initial droplet growth is dominated by monomer diffusion, and the steady late growth rate of droplet radius follows a power law of 1/3, which is unaffected by the substrate disjoining pressure. Instead, the disjoining pressure modifies the growth rate of the droplet height, which then follows a power law of 1/4. We demonstrate how spatial depletion of monomers could lead to a growth arrest of the nanodroplet, as observed experimentally. This work has further implications on the growth kinetics, transport and phase transition of liquids at the nanoscale.

摘要

我们研究了在基底表面上 10-100nm 水纳米液滴的轴对称均匀生长。液滴生长的主要机制归因于通过环境中的水蒸气吸收到基底上形成的横向扩散水单体的积累。在准稳态热力学平衡的假设下,纳米液滴根据增强的 Young-Laplace 方程演化。我们使用连续体理论来模拟包括非润湿压力、接触角和单体扩散的耦合效应在内的纳米液滴生长动力学。我们的数值结果表明,初始液滴生长主要由单体扩散控制,液滴半径的稳定后期生长速率遵循 1/3 的幂律,不受基底非润湿压力的影响。相反,非润湿压力会改变液滴高度的生长速率,后者遵循 1/4 的幂律。我们展示了单体的空间耗尽如何导致纳米液滴的生长停止,这与实验观察到的情况一致。这项工作对纳米尺度下液体的生长动力学、输运和相变具有进一步的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验