Suppr超能文献

一种用于测量间充质基质细胞介导的T细胞抑制作用的可重复性免疫效力测定法。

A reproducible immunopotency assay to measure mesenchymal stromal cell-mediated T-cell suppression.

作者信息

Bloom Debra D, Centanni John M, Bhatia Neehar, Emler Carol A, Drier Diana, Leverson Glen E, McKenna David H, Gee Adrian P, Lindblad Robert, Hei Derek J, Hematti Peiman

机构信息

Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Waisman Biomanufacturing, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

Cytotherapy. 2015 Feb;17(2):140-51. doi: 10.1016/j.jcyt.2014.10.002. Epub 2014 Nov 21.

Abstract

BACKGROUND AIMS

The T-cell suppressive property of bone marrow-derived mesenchymal stromal cells (MSCs) has been considered a major mode of action and basis for their utilization in a number of human clinical trials. However, there is no well-established reproducible assay to measure MSC-mediated T-cell suppression.

METHODS

At the University of Wisconsin-Madison Production Assistance for Cellular Therapy (PACT) Center, we developed an in vitro quality control T-cell suppression immunopotency assay (IPA) that uses anti-CD3 and anti-CD28 antibodies to stimulate T-cell proliferation. We measured MSC-induced suppression of CD4+ T-cell proliferation at various effector-to-target cell ratios with the use of defined peripheral blood mononuclear cells and in parallel compared with a reference standard MSC product. We calculated an IPA value for suppression of CD4+ T cells for each MSC product.

RESULTS

Eleven MSC products generated at three independent PACT centers were evaluated for cell surface phenotypic markers and T-cell suppressive properties. Flow cytometry results demonstrated typical MSC cell surface marker profiles. There was significant variability in the level of suppression of T-cell proliferation, with immunopotency assay values ranging from 27% to 88%. However, MSC suppression did not correlate with human leukocyte antigen-DR expression.

CONCLUSIONS

We have developed a reproducible immunopotency assay to measure allogeneic MSC-mediated suppression of CD4+ T cells. Additional studies may be warranted to determine how these in vitro assay results may correlate with other immunomodulatory properties of MSCs, in addition to evaluating the ability of this assay to predict in vivo efficacy.

摘要

背景与目的

骨髓间充质基质细胞(MSCs)的T细胞抑制特性被认为是其主要作用模式,也是其在多项人体临床试验中应用的基础。然而,目前尚无成熟的可重复检测方法来测量MSC介导的T细胞抑制作用。

方法

在威斯康星大学麦迪逊分校细胞治疗生产辅助(PACT)中心,我们开发了一种体外质量控制T细胞抑制免疫效力检测方法(IPA),该方法使用抗CD3和抗CD28抗体刺激T细胞增殖。我们使用确定的外周血单个核细胞,在不同效应细胞与靶细胞比例下测量MSC诱导的CD4+ T细胞增殖抑制情况,并与参考标准MSC产品进行平行比较。我们为每个MSC产品计算了CD4+ T细胞抑制的IPA值。

结果

对在三个独立的PACT中心产生的11种MSC产品进行了细胞表面表型标志物和T细胞抑制特性评估。流式细胞术结果显示了典型的MSC细胞表面标志物谱。T细胞增殖抑制水平存在显著差异,免疫效力检测值范围为27%至88%。然而,MSC抑制作用与人类白细胞抗原-DR表达无关。

结论

我们开发了一种可重复的免疫效力检测方法,用于测量异体MSC介导的CD4+ T细胞抑制作用。除了评估该检测方法预测体内疗效的能力外,可能还需要进行更多研究来确定这些体外检测结果与MSC的其他免疫调节特性之间的相关性。

相似文献

1
A reproducible immunopotency assay to measure mesenchymal stromal cell-mediated T-cell suppression.
Cytotherapy. 2015 Feb;17(2):140-51. doi: 10.1016/j.jcyt.2014.10.002. Epub 2014 Nov 21.
2
Quantitative activation suppression assay to evaluate human bone marrow-derived mesenchymal stromal cell potency.
Cytotherapy. 2015 Dec;17(12):1675-86. doi: 10.1016/j.jcyt.2015.08.008. Epub 2015 Sep 28.
4
Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation.
Transplantation. 2003 Feb 15;75(3):389-97. doi: 10.1097/01.TP.0000045055.63901.A9.
5
A streamlined proliferation assay using mixed lymphocytes for evaluation of human mesenchymal stem cell immunomodulation activity.
J Immunol Methods. 2021 Jan;488:112915. doi: 10.1016/j.jim.2020.112915. Epub 2020 Nov 16.
6
Short-term assays for mesenchymal stromal cell immunosuppression of T-lymphocytes.
Front Immunol. 2023 Sep 26;14:1225047. doi: 10.3389/fimmu.2023.1225047. eCollection 2023.
9
Mesenchymal stromal cells augment CD4+ and CD8+ T-cell proliferation through a CCL2 pathway.
Cytotherapy. 2013 Oct;15(10):1195-207. doi: 10.1016/j.jcyt.2013.05.009. Epub 2013 Jul 9.
10
[Effect of Human Bone Marrow Mesenchymal Stem Cells with Ectopic High OCT4 Expression on T Lymphocyte Function].
Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2023 Oct;31(5):1523-1530. doi: 10.19746/j.cnki.issn.1009-2137.2023.05.043.

引用本文的文献

1
Isolate Circulating Mesenchymal Stromal Cells Without Growth Factor Administration and Using Density Gradient.
Stem Cells Int. 2025 Jun 19;2025:5545892. doi: 10.1155/sci/5545892. eCollection 2025.
4
Substrate topographies modulate the secretory activity of human bone marrow mesenchymal stem cells.
Stem Cell Res Ther. 2023 Aug 21;14(1):208. doi: 10.1186/s13287-023-03450-0.
5
Illustrative Potency Assay Examples from Approved Therapies.
Adv Exp Med Biol. 2023;1420:139-149. doi: 10.1007/978-3-031-30040-0_9.
6
Advanced Technologies for Potency Assay Measurement.
Adv Exp Med Biol. 2023;1420:81-95. doi: 10.1007/978-3-031-30040-0_6.
8
Chemokine Assay Matrix Defines the Potency of Human Bone Marrow Mesenchymal Stromal Cells.
Stem Cells Transl Med. 2022 Sep 21;11(9):971-986. doi: 10.1093/stcltm/szac050.
9
CD317-Positive Immune Stromal Cells in Human "Mesenchymal Stem Cell" Populations.
Front Immunol. 2022 Jun 6;13:903796. doi: 10.3389/fimmu.2022.903796. eCollection 2022.

本文引用的文献

1
Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices.
Transfusion. 2014 May;54(5):1418-37. doi: 10.1111/trf.12421. Epub 2013 Oct 16.
2
Mesenchymal stem cell therapy for immune-modulation: the donor, the recipient, and the drugs in-between.
Exp Dermatol. 2014 Sep;23(9):625-8. doi: 10.1111/exd.12459. Epub 2014 Jul 16.
3
Mesenchymal stem cell therapies: the quest for fine-tuning.
Exp Dermatol. 2014 Sep;23(9):632-3. doi: 10.1111/exd.12432. Epub 2014 Jul 16.
4
Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the Quantum Cell Expansion System.
Cytotherapy. 2014 Aug;16(8):1048-58. doi: 10.1016/j.jcyt.2014.01.417. Epub 2014 Apr 13.
6
Mesenchymal stem cells: immune evasive, not immune privileged.
Nat Biotechnol. 2014 Mar;32(3):252-60. doi: 10.1038/nbt.2816. Epub 2014 Feb 23.
7
MSC-based product characterization for clinical trials: an FDA perspective.
Cell Stem Cell. 2014 Feb 6;14(2):141-5. doi: 10.1016/j.stem.2014.01.013.
10
IDO-independent suppression of T cell effector function by IFN-γ-licensed human mesenchymal stromal cells.
J Immunol. 2014 Feb 15;192(4):1491-501. doi: 10.4049/jimmunol.1301828. Epub 2014 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验