Suppr超能文献

用于监管目的的、在多个受试物种中预测药理活性化合物水生毒性的定量构效关系建模。

QSTR modeling for predicting aquatic toxicity of pharmacological active compounds in multiple test species for regulatory purpose.

作者信息

Singh Kunwar P, Gupta Shikha, Basant Nikita

机构信息

Academy of Scientific and Innovative Research, Anusandhan Bhawan, Rafi Marg, New Delhi 110 001, India; Environmental Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001, India.

Academy of Scientific and Innovative Research, Anusandhan Bhawan, Rafi Marg, New Delhi 110 001, India; Environmental Chemistry Division, CSIR-Indian Institute of Toxicology Research, Post Box 80, Mahatma Gandhi Marg, Lucknow 226 001, India.

出版信息

Chemosphere. 2015 Feb;120:680-9. doi: 10.1016/j.chemosphere.2014.10.025. Epub 2014 Nov 4.

Abstract

High concentrations of pharmacological active compounds (PACs) detected in global drinking water resources and their toxicological implications in aquatic life has become a matter of concern compelling for the development of reliable QSTRs (qualitative/quantitative structure-toxicity relationships) for their risk assessment. Robust QSTRs, such as decision treeboost (DTB) and decision tree forest (DTF) models implementing stochastic gradient boosting and bagging algorithms were established by experimental toxicity data of structurally diverse PACs in daphnia using molecular descriptors for predicting toxicity of new untested compounds in multiple test species. Developed models were rigorously validated using OECD recommended internal and external validation procedures and predictive power tested with external data of different trophic level test species (algae and fish). Classification QSTRs (DTB, DTF) rendered accuracy of 98.73% and 97.47%, respectively in daphnia and 84.38%, 85.94% (algae), 78.46% and 79.23% (fish). On the other hand, the regression QSTRs (DTB, DTF) yielded squared correlation coefficient values of 0.831, 0.852 (daphnia), 0.534, 0.556 (algae) and 0.620, 0.637 (fish). QSTRs developed in this study passed the OECD validation criteria and performed better than reported earlier for predicting toxicity of PACs, and can be used for screening the new untested compounds for regulatory purpose.

摘要

在全球饮用水资源中检测到的高浓度药理活性化合物(PACs)及其对水生生物的毒理学影响,已成为一个令人担忧的问题,迫切需要开发可靠的定性/定量结构-毒性关系(QSTRs)来进行风险评估。通过使用分子描述符,利用结构多样的PACs在水蚤中的实验毒性数据,建立了强大的QSTRs,如实施随机梯度提升和装袋算法的决策树增强(DTB)和决策树森林(DTF)模型,用于预测多种测试物种中新型未测试化合物的毒性。使用经合组织推荐的内部和外部验证程序对开发的模型进行了严格验证,并使用不同营养级测试物种(藻类和鱼类)的外部数据测试了预测能力。分类QSTRs(DTB、DTF)在水蚤中的准确率分别为98.73%和97.47%,在藻类中为84.38%、85.94%,在鱼类中为78.46%和79.23%。另一方面,回归QSTRs(DTB、DTF)产生的平方相关系数值分别为0.831、0.852(水蚤)、0.534、0.556(藻类)和0.620、0.637(鱼类)。本研究中开发的QSTRs通过了经合组织的验证标准,在预测PACs毒性方面比之前报道的表现更好,可用于筛选新型未测试化合物以用于监管目的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验