Suppr超能文献

三维蛋白质结构预测:方法与计算策略

Three-dimensional protein structure prediction: Methods and computational strategies.

作者信息

Dorn Márcio, E Silva Mariel Barbachan, Buriol Luciana S, Lamb Luis C

机构信息

Federal University of Rio Grande do Sul, Institute of Informatics, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.

Federal University of Rio Grande do Sul, Center of Biotechnology, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS, Brazil.

出版信息

Comput Biol Chem. 2014 Dec;53PB:251-276. doi: 10.1016/j.compbiolchem.2014.10.001. Epub 2014 Oct 12.

Abstract

A long standing problem in structural bioinformatics is to determine the three-dimensional (3-D) structure of a protein when only a sequence of amino acid residues is given. Many computational methodologies and algorithms have been proposed as a solution to the 3-D Protein Structure Prediction (3-D-PSP) problem. These methods can be divided in four main classes: (a) first principle methods without database information; (b) first principle methods with database information; (c) fold recognition and threading methods; and (d) comparative modeling methods and sequence alignment strategies. Deterministic computational techniques, optimization techniques, data mining and machine learning approaches are typically used in the construction of computational solutions for the PSP problem. Our main goal with this work is to review the methods and computational strategies that are currently used in 3-D protein prediction.

摘要

结构生物信息学中一个长期存在的问题是,当仅给出氨基酸残基序列时,确定蛋白质的三维(3-D)结构。已经提出了许多计算方法和算法来解决三维蛋白质结构预测(3-D-PSP)问题。这些方法可分为四大类:(a)无数据库信息的第一原理方法;(b)有数据库信息的第一原理方法;(c)折叠识别和穿线方法;以及(d)比较建模方法和序列比对策略。确定性计算技术、优化技术、数据挖掘和机器学习方法通常用于构建PSP问题的计算解决方案。我们这项工作的主要目标是回顾目前在三维蛋白质预测中使用的方法和计算策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验