Xiao Junwu, Chen Chen, Xi Jiangbo, Xu Yangyang, Xiao Fei, Wang Shuai, Yang Shihe
Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Department of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, PR China.
Nanoscale. 2015 Apr 28;7(16):7056-64. doi: 10.1039/c4nr05917d.
The current bottleneck for fuel cells and metal-air batteries lies in the sluggish oxygen reduction reaction (ORR) on the cathode side. Despite tremendous efforts, to develop a highly efficient ORR catalyst at low cost remains a great challenge. Herein, we have synthesized core-shell Co@Co3O4 nanoparticles embedded in the bamboo-like N-doped carbon tubes (BNCNTs) by a simple approach comprising thermal treatment of cobalt carbonate hydroxide and urea and oxidization. The ORR catalytic activities of the Co@Co3O4/BNCNT composites are closely dependent on the oxidization degree of the Co nanoparticles and the N content in the BNCNTs. When oxidized at 300 °C, the as-formed Co@Co3O4/BNCNTs-300 composite catalyst with an N/C molar ratio of ∼ 1.6% achieves the maximum ORR catalytic activity. The composite catalyst also exhibits a higher ORR catalytic activity than the Co3O4/carbon nanotube (CNT) catalyst. The tolerance for methanol molecules and the cycle stability performance of the composite catalyst are even superior to those of the highly efficient Pt/C catalyst. Such an excellent ORR catalytic activity can be ascribed to (1) the core-shell Co@Co3O4 nanoparticles embedded in BNCNTs, (2) the N-doping in BNCNTs, and (3) the synergetic effect of (1) and (2) on Co3O4 firmly attached to both Co nanoparticles and BNCNTs, resulting in accelerated electron transport and enhanced charge delocalization.
目前,燃料电池和金属空气电池的瓶颈在于阴极侧缓慢的氧还原反应(ORR)。尽管人们付出了巨大努力,但以低成本开发高效的ORR催化剂仍然是一个巨大挑战。在此,我们通过一种简单的方法合成了嵌入竹状氮掺杂碳管(BNCNTs)中的核壳Co@Co3O4纳米颗粒,该方法包括对碱式碳酸钴和尿素进行热处理以及氧化。Co@Co3O4/BNCNT复合材料的ORR催化活性密切依赖于Co纳米颗粒的氧化程度和BNCNTs中的N含量。当在300°C下氧化时,形成的N/C摩尔比约为1.6%的Co@Co3O4/BNCNTs-300复合催化剂实现了最大的ORR催化活性。该复合催化剂还表现出比Co3O4/碳纳米管(CNT)催化剂更高的ORR催化活性。复合催化剂对甲醇分子的耐受性和循环稳定性性能甚至优于高效的Pt/C催化剂。如此优异的ORR催化活性可归因于:(1)嵌入BNCNTs中的核壳Co@Co3O4纳米颗粒;(2)BNCNTs中的N掺杂;以及(3)(1)和(2)对牢固附着在Co纳米颗粒和BNCNTs上的Co3O4的协同作用,从而加速电子传输并增强电荷离域。