Mooij H L, Cabrales P, Bernelot Moens S J, Xu D, Udayappan S D, Tsai A G, van der Sande M A J, de Groot E, Intaglietta M, Kastelein J J P, Dallinga-Thie G M, Esko J D, Stroes E S, Nieuwdorp M
Department of Vascular Medicine, AMC-UvA, Amsterdam, The Netherlands (M., B.M., U., G., K., D.T., S., N.).
Department of Bioengineering, UC San Diego, CA (C., T., I.).
J Am Heart Assoc. 2014 Dec 2;3(6):e001274. doi: 10.1161/JAHA.114.001274.
Heparanase is the major enzyme involved in degradation of endothelial heparan sulfates, which is associated with impaired endothelial nitric oxide synthesis. However, the effect of heparan sulfate chain length in relation to endothelial function and nitric oxide availability has never been investigated. We studied the effect of heterozygous mutations in heparan sulfate elongation genes EXT1 and EXT2 on endothelial function in vitro as well as in vivo.
Flow-mediated dilation, a marker of nitric oxide bioavailability, was studied in Ext1(+/-) and Ext2(+/-) mice versus controls (n=7 per group), as well as in human subjects with heterozygous loss of function mutations in EXT1 and EXT2 (n=13 hereditary multiple exostoses and n=13 controls). Endothelial function was measured in microvascular endothelial cells under laminar flow with or without siRNA targeting EXT1 or EXT2. Endothelial glycocalyx and maximal arteriolar dilatation were significantly altered in Ext1(+/-) and Ext2(+/-) mice compared to wild-type littermates (glycocalyx: wild-type 0.67±0.1 μm, Ext1(+/-) 0.28±0.1 μm and Ext2(+/-) 0.25±0.1 μm, P<0.01, maximal arteriolar dilation during reperfusion: wild-type 11.3±1.0%), Ext1(+/-) 15.2±1.4% and Ext2(+/-) 13.8±1.6% P<0.05). In humans, brachial artery flow-mediated dilation was significantly increased in hereditary multiple exostoses patients (hereditary multiple exostoses 8.1±0.8% versus control 5.6±0.7%, P<0.05). In line, silencing of microvascular endothelial cell EXT1 and EXT2 under flow led to significant upregulation of endothelial nitric oxide synthesis and phospho-endothelial nitric oxide synthesis protein expression.
Our data implicate that heparan sulfate elongation genes EXT1 and EXT2 are involved in maintaining endothelial homeostasis, presumably via increased nitric oxide bioavailability.
乙酰肝素酶是参与内皮硫酸乙酰肝素降解的主要酶,这与内皮一氧化氮合成受损有关。然而,硫酸乙酰肝素链长度对内皮功能和一氧化氮可用性的影响从未被研究过。我们研究了硫酸乙酰肝素延长基因EXT1和EXT2中的杂合突变对体外和体内内皮功能的影响。
研究了Ext1(+/-)和Ext2(+/-)小鼠与对照组(每组n = 7)以及EXT1和EXT2功能丧失杂合突变的人类受试者(13例遗传性多发性骨软骨瘤患者和13例对照组)的血流介导的扩张,这是一氧化氮生物利用度的一个指标。在有或没有靶向EXT1或EXT2的小干扰RNA的层流条件下,测量微血管内皮细胞的内皮功能。与野生型同窝小鼠相比,Ext1(+/-)和Ext2(+/-)小鼠的内皮糖萼和最大小动脉扩张有显著改变(糖萼:野生型0.67±0.1μm,Ext1(+/-) 0.28±0.1μm,Ext2(+/-) 0.25±0.1μm,P<0.01;再灌注期间最大小动脉扩张:野生型11.3±1.0%,Ext1(+/-) 15.2±1.4%,Ext2(+/-) 13.8±1.6%,P<0.05)。在人类中,遗传性多发性骨软骨瘤患者的肱动脉血流介导的扩张显著增加(遗传性多发性骨软骨瘤患者8.1±0.8%,对照组5.6±0.7%,P<0.05)。同样,在流动条件下对微血管内皮细胞的EXT1和EXT2进行沉默导致内皮一氧化氮合成和磷酸化内皮一氧化氮合成蛋白表达显著上调。
我们的数据表明,硫酸乙酰肝素延长基因EXT1和EXT2可能通过增加一氧化氮生物利用度参与维持内皮稳态。